分析 作出不等式組對應的平面區(qū)域,利用數(shù)形結合即可得到結論.
解答 解:由z=y-2x+m,得y=2x+z-m,
作出不等式對應的可行域,
平移直線y=2x+z-m,
由平移可知當直線y=2x+z-m經過點B(4,2)時,
直線y=2x+z-m的截距最小,此時z取得最小值,
最小值為m-6,
當直線y=2x+z-m經過點A(0,2)時,
直線y=2x+z-m的截距最大,此時z取得最大值,最大值m+2,
所以zmax-zmin=8.
故答案為:8.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=3x-3 | B. | y=2x+1 | C. | y=x+1 | D. | y=0.5x+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20m | B. | 22m | C. | 24m | D. | 26m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 點Q在圓M內 | B. | 點Q在圓M上 | ||
C. | 點Q在圓M外 | D. | 以上結論都有可能 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com