分析 作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:由z=y-2x+m,得y=2x+z-m,
作出不等式對應(yīng)的可行域,
平移直線y=2x+z-m,
由平移可知當(dāng)直線y=2x+z-m經(jīng)過點(diǎn)B(4,2)時(shí),
直線y=2x+z-m的截距最小,此時(shí)z取得最小值,
最小值為m-6,
當(dāng)直線y=2x+z-m經(jīng)過點(diǎn)A(0,2)時(shí),
直線y=2x+z-m的截距最大,此時(shí)z取得最大值,最大值m+2,
所以zmax-zmin=8.
故答案為:8.
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=3x-3 | B. | y=2x+1 | C. | y=x+1 | D. | y=0.5x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20m | B. | 22m | C. | 24m | D. | 26m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點(diǎn)Q在圓M內(nèi) | B. | 點(diǎn)Q在圓M上 | ||
C. | 點(diǎn)Q在圓M外 | D. | 以上結(jié)論都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com