分析 (1)利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)利用“裂項(xiàng)求和”方法即可得出.
解答 解:(1)因?yàn)閿?shù)列{an}是等差數(shù)列,設(shè)其首項(xiàng)是a1,公差是d,由題意a3+a9=2a6=24,a6=12,${S_5}=\frac{{5({a_1}+{a_5})}}{2}=30,{a_1}+{a_5}=2{a_3}=12,{a_3}=6$,
解得a1=2,d=2,an=2n.…(5分)
(2)因?yàn)閍n=2n,an+2=2(n+2),
$\frac{1}{{{a_n}•{a_{n+2}}}}=\frac{1}{2n•2(n+2)}=\frac{1}{8}•(\frac{1}{n}-\frac{1}{n+2})$,
∴$\begin{array}{l}{T_n}=\frac{1}{8}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})\\=\frac{1}{8}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})\end{array}$
=$\frac{n(3n+5)}{16(n+1)(n+2)}$…(12分)
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (¬p)∧q | B. | p∧q | C. | p∨(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{π}{2}$,-$\frac{π}{4}$) | B. | (0,$\frac{π}{2}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+2$\sqrt{3}$+$\sqrt{6}$ | B. | 4+2$\sqrt{3}$+$\sqrt{6}$ | C. | 4+4$\sqrt{3}$+$\sqrt{6}$ | D. | 2+$\sqrt{3}$+$\sqrt{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com