=,,,設(shè);
(1)求 f(x)的最小正周期和對稱中心;
(2)當(dāng)時,求x的值.
(3)若,求 f(x)的值域.
解:(1):∵ = 
=cosx﹣sinx
= =
  ∴f(x)的最小正周期T=2π,由 可得 
∴函數(shù)圖象的對稱中心為 .
(2)
 ∴ ,k∈Z,
∴ ,k∈Z
(3) , 得  ,
  ∴
  故 當(dāng) , 時,f(x)的值域是 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xekx(k≠0).
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)當(dāng)k>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)巳知各項均為正數(shù)的等差數(shù)列{an}三項的和為27,且滿足a1a3=65數(shù)列{bn}的前n項和為Sn,且對一切正整數(shù)n,點(n,Sn)都在函數(shù)f(x)=
3x+1
2
-
3
2
圖象上.
(I) 求數(shù)列{an}、{bn}通項公式;
(II)設(shè)cn=anbn,求數(shù)列{cn}前n項和Tn;
(III)設(shè)dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),若dn+1>dn,n∈N*成立,試證明:λ∈(-
9
14
,
3
8
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,若x>0時均有(ax-1)(x2-2ax-1)≥0,則a=
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,  2)、  
b
=(2,  3)
,若向量λ
a
+
b
與向量
c
=(-3,-3)
共線,則λ=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)有最大值且最大值為正實數(shù),集合

,集合

   (1)求;

   (2)定義的差集:,設(shè),x均為整數(shù),且,取自A-B的概率,x取自A∩B的概率,寫出與b的三組值,使,,并分別寫出所有滿足上述條件的(從大到。、b(從小到大)依次構(gòu)成的數(shù)列{}、{bn}的通項公式(不必證明);

   (3)若函數(shù)中,, ,設(shè)t­1、t2是方程的兩個根,判斷 是否存在最大值及最小值,若存在,求出相應(yīng)的值;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案