13.在數(shù)列{an}中,a1=1an+1=$\frac{2(n+1)}{n}{a_n}$,n∈N*.
(1)求證數(shù)列$\left\{{\frac{a_n}{n}}\right\}$為等比數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (1)直接把已知數(shù)列遞推式變形可得$\frac{{\frac{{{a_{n+1}}}}{n+1}}}{{\frac{a_n}{n}}}=2$,即$\left\{{\frac{a_n}{n}}\right\}$是首項(xiàng)為1,公比為2的等比數(shù)列;
(2)由(1)求出數(shù)列{an}的通項(xiàng)公式,再由錯(cuò)位相減法求數(shù)列{an}的前n項(xiàng)和Sn

解答 (1)證明:由${a_{n+1}}=\frac{2(n+1)}{n}{a_n}$,得$\frac{{\frac{{{a_{n+1}}}}{n+1}}}{{\frac{a_n}{n}}}=2$,
又$\frac{{a}_{1}}{1}=1≠0$,
∴$\left\{{\frac{a_n}{n}}\right\}$是首項(xiàng)為1,公比為2的等比數(shù)列;
(2)解:由(1)知,$\left\{{\frac{a_n}{n}}\right\}$是首項(xiàng)為1,公比為2的等比數(shù)列,
∴$\frac{a_n}{n}={2^{n-1}}$,則${a_n}={2^{n-1}}•n$,
則${S_n}=1+2•2+3•{2^2}+n•{2^{n-1}}$,
$2{S_n}=2+2•{2^2}+$…+(n-1)•2n-1+n•2n
兩式作差得:-Sn=1+2+22+2n-1-n•2n=2n-1-n•2n=(1-n)•2n-1,
∴${S_n}=(n-1)•{2^n}+1$.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.把函數(shù)y=sin2x的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再把函數(shù)圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=f(x)的圖象,則函數(shù)y=f(x)的圖象上最高點(diǎn)與最低點(diǎn)之間的距離的最小值為( 。
A.$\sqrt{{π^2}+4}$B.$2\sqrt{{π^2}+1}$C.$\sqrt{\frac{π^2}{4}+4}$D.$\sqrt{\frac{π^2}{16}+4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.連江一中第49屆田徑運(yùn)動(dòng)會(huì)提出了“我運(yùn)動(dòng)、我陽(yáng)光、我健康、我快樂(lè)”的口號(hào),某同學(xué)要設(shè)計(jì)一張如圖所示的豎向張貼的長(zhǎng)方形海報(bào)進(jìn)行宣傳,要求版心面積為162dm2(版心是指圖中的長(zhǎng)方形陰影部分,dm為長(zhǎng)度單位分米),上、下兩邊各空2dm,左、右兩邊各空1dm.
(1)若設(shè)版心的高為xdm,求海報(bào)四周空白面積關(guān)于x的函數(shù)S(x)的解析式;
(2)要使海報(bào)四周空白面積最小,版心的高和寬該如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若函數(shù)f(x)=x2+4x+5-c的最小值為2,則函數(shù)f(x-2015)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.直線2x+y-2=0被圓x2+y2=5截得的弦長(zhǎng)為$\frac{{2\sqrt{105}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合P={x?x-1≤0},Q={x?0<x≤2},則(CRP)∩Q=( 。
A.(0,1)B.(0.2]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若asin2B+bsinA=0,b=$\sqrt{3}$C,則$\frac{c}{a}$=(  )
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=logax+b(a>0,a≠1)的定義域、值域都是[1,2],則a+b=$\frac{5}{2}$或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知球的半徑為5,球心到截面的距離為3,則截面圓的面積為( 。
A.B.C.D.16π

查看答案和解析>>

同步練習(xí)冊(cè)答案