分析 (1)直接把已知數(shù)列遞推式變形可得$\frac{{\frac{{{a_{n+1}}}}{n+1}}}{{\frac{a_n}{n}}}=2$,即$\left\{{\frac{a_n}{n}}\right\}$是首項(xiàng)為1,公比為2的等比數(shù)列;
(2)由(1)求出數(shù)列{an}的通項(xiàng)公式,再由錯(cuò)位相減法求數(shù)列{an}的前n項(xiàng)和Sn.
解答 (1)證明:由${a_{n+1}}=\frac{2(n+1)}{n}{a_n}$,得$\frac{{\frac{{{a_{n+1}}}}{n+1}}}{{\frac{a_n}{n}}}=2$,
又$\frac{{a}_{1}}{1}=1≠0$,
∴$\left\{{\frac{a_n}{n}}\right\}$是首項(xiàng)為1,公比為2的等比數(shù)列;
(2)解:由(1)知,$\left\{{\frac{a_n}{n}}\right\}$是首項(xiàng)為1,公比為2的等比數(shù)列,
∴$\frac{a_n}{n}={2^{n-1}}$,則${a_n}={2^{n-1}}•n$,
則${S_n}=1+2•2+3•{2^2}+n•{2^{n-1}}$,
$2{S_n}=2+2•{2^2}+$…+(n-1)•2n-1+n•2n,
兩式作差得:-Sn=1+2+22+2n-1-n•2n=2n-1-n•2n=(1-n)•2n-1,
∴${S_n}=(n-1)•{2^n}+1$.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{{π^2}+4}$ | B. | $2\sqrt{{π^2}+1}$ | C. | $\sqrt{\frac{π^2}{4}+4}$ | D. | $\sqrt{\frac{π^2}{16}+4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (0.2] | C. | [1,2] | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com