從橢圓 上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB∥OP,,求橢圓的方程.
【答案】分析:欲求橢圓方程,只需求出a,b的值即可,因為過點P向x軸作垂線,垂足恰為左焦點F1,所以F1O=c,由AB∥OP,可得,
△PF1O與△BOA相似,所以,就此可得到一個含a,b,c的等式,因為,,所以a+c=,又得到一個含a,b,c的等式,再根據(jù)橢圓中,a2=b2+c2,就可解出a,b,c,得到橢圓的標準方程.
解答:解:∵AB∥OP

又∵PF1⊥x軸

∴b=c

解得:
∴橢圓方程為
點評:本題主要考查根據(jù)橢圓的性質求橢圓的標準方程,關鍵是找三個含a,b,c的等式,聯(lián)立解方程組.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(四川卷解析版) 題型:選擇題

(5分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點F1,A是橢圓與x軸正半軸的交點,B是橢圓與y軸正半軸的交點,且AB∥OP(O是坐標原點),則該橢圓的離心率是( 。

A.     B.         C.      D. 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆陜西省高二下學期期末文科數(shù)學試卷(解析版) 題型:解答題

從橢圓 上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB//OP,,求橢圓的方程

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

從橢圓數(shù)學公式上一點P向x軸引垂線,垂足恰為橢圓的左焦點F1,A為橢圓的右頂點,B是橢圓的上頂點,且數(shù)學公式
(1)求該橢圓的離心率.
(2)若該橢圓的準線方程是數(shù)學公式,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年廣東省廣州市七區(qū)聯(lián)考高二(下)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

(2009年)從橢圓上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB∥OP(O為坐標原點),則該橢圓的離心率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年廣東省惠州市高三第二次調研數(shù)學試卷(文科)(解析版) 題型:解答題

從橢圓上一點P向x軸引垂線,垂足恰為橢圓的左焦點F1,A為橢圓的右頂點,B是橢圓的上頂點,且
(1)求該橢圓的離心率.
(2)若該橢圓的準線方程是,求橢圓方程.

查看答案和解析>>

同步練習冊答案