【題目】設(shè)函數(shù) . (I)求 的值;
(II)若f(a)>f(﹣a),求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)f(﹣ )=log0.5( )=2,f(2)=log22=1,∴ =1,
(Ⅱ)當(dāng)x>0時(shí),f(x)=log2x,函數(shù)為增函數(shù),
當(dāng)x<0時(shí),f(x)=log0.5(﹣x),函數(shù)也為增函數(shù),
∵f(a)>f(﹣a),
當(dāng)a>0時(shí),則log2a>log0.5a=log2 ,即a> ,解得a>1,
當(dāng)a<0時(shí),則log0.5(﹣a)=log2(﹣a)即log2 >log2(﹣a),即﹣ >﹣a,解得﹣1<a<0
綜上所述實(shí)數(shù)a的取值范圍(﹣1,0)∪(1,+∞)
【解析】(Ⅰ)根據(jù)分段函數(shù)的解析,代值計(jì)算即可,(Ⅱ)對a進(jìn)行分類討論,即可求出a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機(jī)構(gòu)為了解公眾對“車輛限行”的態(tài)度,隨機(jī)抽查了50人,并將調(diào)查情況進(jìn)行整理后制成下表:
(1)規(guī)定:年齡在內(nèi)的為青年人,年齡在內(nèi)的為中年人,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表:
(2)能否在犯錯(cuò)誤的概率不超過0.025的前提下,認(rèn)為贊成“車輛限行”與年齡有關(guān)?
參考公式和數(shù)據(jù): ,其中.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)存在兩個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)和分別是的兩個(gè)極值點(diǎn)且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ) 當(dāng)a=-1時(shí),求證: ;
(Ⅱ) 對任意,存在,使成立,求a的取值范圍.
(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點(diǎn)P(1,2),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在區(qū)間(0,+∞)上的增函數(shù),f(2)=1,且對于任意a,b∈(0,+∞), 恒成立. (I)求f(8);
(II)求不等式 的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在 上的值域是 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過橢圓: 的左右焦點(diǎn)分別作直線, 交橢圓于與,且.
(1)求證:當(dāng)直線的斜率與直線的斜率都存在時(shí), 為定值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,,=4 ,,F為棱AE的中點(diǎn).
(1)求證:平面平面;
(2)若直線與平面所成角為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com