7.已知直線(2+m-m2)x-(4-m2)y+m2-4=0的斜率不存在,則m的值是(  )
A.2B.2或$-\frac{1}{2}$C.-2D.$\frac{3}{4}$

分析 由斜率不存在可得4-m2=0,解方程驗(yàn)證可得.

解答 解:∵直線(2+m-m2)x-(4-m2)y+m2-4=0的斜率不存在,
∴4-m2=0,解得m=2或m=-2,
當(dāng)m=2時,2+m-m2=0,
∵直線方程中系數(shù)A和B不能同時為0,應(yīng)舍去.
故選:C

點(diǎn)評 本題考查直線的一般式方程,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x∈[0,π),則sinx<$\frac{\sqrt{2}}{2}$的x取值范圍為[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等差數(shù)列{an}中,已知a1>0,前n項(xiàng)和為Sn,且有S3=S11,則$\frac{a_1}ccse2sy$=$-\frac{13}{2}$,當(dāng)Sn取得最大值時,n=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$在某一個周期內(nèi)的最低點(diǎn)和最高點(diǎn)坐標(biāo)為$(-\frac{π}{12},-2),(\frac{5π}{12},2)$,則該函數(shù)的解析式為( 。
A.$f(x)=2sin(2x+\frac{π}{3})$B.$f(x)=2sin(2x-\frac{π}{3})$C.$f(x)=2sin(2x+\frac{π}{6})$D.$f(x)=2sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$f(x)=\left\{{\begin{array}{l}{-x(-1<x<0)}\\{{x^2}(0≤x<1)}\\{x(1≤x≤2)}\end{array}}\right.$,求$f(\frac{1}{2})$=(  )
A.$\frac{1}{4}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.過圓x2+y2=4外一點(diǎn)P(4,2)作圓的兩條切線,切點(diǎn)為A,B,則△ABP的外接圓的方程是(x-2)2+(y-1)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,A、B、C所對的邊分別是a、b、c,且有bcosC+ccosB=2acosB.
(1)求B的大小;
(2)若△ABC的面積是$\frac{3\sqrt{3}}{4}$,且a+c=5,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖1,矩形ABCD,AB=2BC=4,M,N,E分別為AD,BC,CD的中點(diǎn).現(xiàn)將△ADE沿AE折起,折起過程中,點(diǎn)D仍記作D,得到如圖2所示的四棱錐D-ABCE.
(1)證明:MN∥平面CDE;
(2)當(dāng)AD⊥BE時,求直線BD與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.計(jì)算下列各式中S的值,能設(shè)計(jì)算法求解的是( 。
①S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{100}}$
②S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{100}}$+…
③S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n}}$(n≥1且n∈N*
A.①②B.①③C.②③D.①②③

查看答案和解析>>

同步練習(xí)冊答案