19.數(shù)列1,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,$\frac{1}{4}$,$\frac{2}{3}$,$\frac{3}{2}$,$\frac{4}{1}$,…,則$\frac{3}{5}$是該數(shù)列的第24項.

分析 該數(shù)列中:分子、分母之和為2的有1項,為3的有2項,為4的有3項,為5的有4項,…,由此可知:分子、分母之和為7的有6項,而分子、分母之和為8的有7項,排列順序為:$\frac{1}{7}$,$\frac{2}{6}$,$\frac{3}{5}$,可得$\frac{3}{5}$是分子、分母之和為8的第3項,再由等差數(shù)列的前n項和公式計算即可得答案.

解答 解:觀察數(shù)列1,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,$\frac{1}{4}$,$\frac{2}{3}$,$\frac{3}{2}$,$\frac{4}{1}$,…,
該數(shù)列中:分子、分母之和為2的有1項,為3的有2項,為4的有3項,為5的有4項,…,
∴分子、分母之和為7的有6項.
而分子、分母之和為8的有7項,排列順序為:$\frac{1}{7}$,$\frac{2}{6}$,$\frac{3}{5}$,其中$\frac{3}{5}$是分子、分母之和為8的第3項,
故共有$\frac{6+1}{2}×6+3=24$項.
故答案為:24.

點評 本題考查了通過觀察所要解決的提問轉(zhuǎn)化為利用等差數(shù)列的前n項和公式解決,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,據(jù)氣象部門預(yù)報,在距離某碼頭南偏東45°方向600km處的熱帶風暴中心正以20km/h的速度向正北方 向移動,距風暴中心450km以內(nèi)的地區(qū)都將受到影響,則該碼頭將受到熱帶風暴影響的時間為( 。
A.14hB.15hC.16h?D.17h

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項和為Sn,a3=5,S5=3S3-2.
(1)求{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖所示,PA為圓O的切線,A為切點,PO交圓O于B、C兩點,PA=3,PB=1,∠BAC的角平分線與BC和圓O分別交于點D和E.
(I)求證PA•DC=PC•DB;
(Ⅱ)求 AD•AE的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某高中學校在2015年的一次體能測試中,規(guī)定所有男生必須依次參加50米跑、立定跳遠和一分鐘引體向上三項測試,只有三項測試全部達標才算合格,已知男生甲的50米跑和立定跳遠的測試與男生乙的50米跑測試已達標,男生甲需要參加一分鐘引體向上測試,男生乙還需要參加立定跳遠和一分鐘引體向上兩項測試,若甲參加一分鐘引體向上測試達標的概率為p,乙參加立定跳遠和一分鐘引體向上測試達標的概率均為$\frac{1}{2}$,甲、乙每一項測試是否達標互不影響,已知甲和乙同時合格的概率為$\frac{1}{6}$.
(1)求p的值,并計算甲和乙恰有一人合格的概率;
(2)在三項測試項目中,設(shè)甲達標的測試項目數(shù)為x,乙達標的測試項目的項數(shù)為y,記ξ=x+y,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.三棱錐P-ABC的四個頂點郡在同一球面上,球心在面ABC上的射影為H,H在棱BC上,AP⊥面ABC,且AP=1,PB=PC=$\sqrt{2}$.則此球的體積為( 。
A.$\frac{3π}{4}$B.$\frac{3π}{2}$C.$\frac{\sqrt{3}π}{4}$D.$\frac{\sqrt{3}π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知直線C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=2+tsinα}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ+2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且C1與C2相交于A,B兩點;
(1)當tanα=1時,判斷直線C1與曲線C2的位置關(guān)系,并說明理由;
(2)當α變化時,求弦AB的中點P的普通方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)短軸的兩個頂點與右焦點的連線構(gòu)成等邊三角形,橢圓C上任意一點到橢圓左右兩個焦點的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C與X軸負半軸交于點A,直線過定點(-1,0)交橢圓于M,N兩點,求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知公差不為零的等差數(shù)列{an}中,a1=1,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式 
(2)求數(shù)列{2an}的前n項和Sn

查看答案和解析>>

同步練習冊答案