3.正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).證明:(1)BD1⊥AC;(2)BD1⊥EB1

分析 (1)以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系Dxyz,可求$\overrightarrow{B{D}_{1}}$=(-1,-1,1),$\overrightarrow{AC}$=(-1,1,0),由$\overrightarrow{B{D}_{1}}•\overrightarrow{AC}$=0,即可證明BD1⊥AC.
(2)由(1)可求$\overrightarrow{B{D}_{1}}$=(-1,-1,1),$\overrightarrow{E{B}_{1}}$=($\frac{1}{2}$,$\frac{1}{2}$,1),由$\overrightarrow{B{D}_{1}}$•$\overrightarrow{E{B}_{1}}$=0,即可證明BD1⊥EB1

解答 證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系Dxyz,
設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E($\frac{1}{2}$,$\frac{1}{2}$,0),B1(1,1,1),
(1)$\overrightarrow{B{D}_{1}}$=(-1,-1,1),$\overrightarrow{AC}$=(-1,1,0),
∴$\overrightarrow{B{D}_{1}}•\overrightarrow{AC}$=(-1)×(-1)+(-1)×1+1×0=0,
∴$\overrightarrow{B{D}_{1}}$⊥$\overrightarrow{AC}$
∴BD1⊥AC.
(2)$\overrightarrow{B{D}_{1}}$=(-1,-1,1),$\overrightarrow{E{B}_{1}}$=($\frac{1}{2}$,$\frac{1}{2}$,1),
∴$\overrightarrow{B{D}_{1}}$•$\overrightarrow{E{B}_{1}}$=(-1)×$\frac{1}{2}$+(-1)×$\frac{1}{2}$+1×1=0,
∴$\overrightarrow{B{D}_{1}}$⊥$\overrightarrow{E{B}_{1}}$,
∴BD1⊥EB1

點(diǎn)評(píng) 本題主要考查了直線與平面垂直的性質(zhì),考查了空間想象能力和推理論證能力,建立空間直角坐標(biāo)系,用向量求解是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知拋物線C:y2=4x的準(zhǔn)線為l,過(guò)M(1,0)且斜率為k的直線與l相交于點(diǎn)A,與拋物線C的一個(gè)交點(diǎn)為B.若$\overrightarrow{AM}=2\overrightarrow{MB}$,則k=$±2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)a>0且a≠1,函數(shù)f(x)=a${\;}^{{x}^{2}-2x}$有最大值,則不等式loga(x-2)>0的解集是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,a=5,b=4,C=60°,則$\overrightarrow{CB}$•$\overrightarrow{CA}$的值為( 。
A.-10B.10C.-10$\sqrt{3}$D.10$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若拋物線y2=ax上一點(diǎn)P(8,yp)到其焦點(diǎn)的距離為10,則a的值為( 。
A.-16B.16C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知圓的方程x2+y2-6x-2y-15=0.
(1)求直線x+2y=0截圓所得的弦長(zhǎng);
(2)求以原點(diǎn)為中點(diǎn)的弦所在直線方程;
(3)若點(diǎn)P(x,y)滿足圓方程,求$\frac{y-10}{x-8}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=ax2-2x+3在(-∞,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.(0,1]C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)x,y∈R,則“x,y≥1”是“x2+y2≥2”的( 。
A.既不充分也不必要條件B.必要不充分條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積等于( 。
A.8πcm2B.7πcm2C.6πcm2D.5πcm2

查看答案和解析>>

同步練習(xí)冊(cè)答案