15.已知函數(shù)f(x)=|x-a|
(I) 若對x∈[0,4]不等式f(x)≤3恒成立,求實數(shù)a的取值范圍;
(II) 當a=2時,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

分析 (I) 先求得不等式f(x)≤3的解集為M,根據(jù)題意,[0,4]⊆M,由此求得實數(shù)a的取值范圍.
(II) 利用絕對值三角不等式求得g(x)=f(x)+f(x+5)的最小值,可得m的范圍.

解答 解:(Ⅰ)由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3,∴不等式f(x)≤3的解集M=[a-3,a+3].
由題意可得[0,4]⊆M,∴$\left\{\begin{array}{l}{a-3≤0}\\{a+3≥4}\end{array}\right.$,求得1≤a≤3.
(Ⅱ)當a=2時,f(x)=|x-2|,設g(x)=f(x)+f(x+5)=|x-2|+|x+3|.
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(當且僅當-3≤x≤2時等號成立),可得g(x)的最小值為5.
因此,若g(x)=f(x)+f(x+5)≥m對x∈R恒成立,知實數(shù)m的取值范圍是(-∞,5].

點評 本題主要考查絕對值不等式的解法,函數(shù)的恒成立問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的奇數(shù)項成等差數(shù)列,偶數(shù)項成等比數(shù)列,且公差和公比都是2,若對滿足m+n≤5的任意正整數(shù)m,n,均有am+an=am+n成立.
(I)求數(shù)列{an}的通項公式;
(II)若bn=$\left\{\begin{array}{l}{\frac{{a}_{n}+1}{{{a}_{n}}^{2}{{a}_{n+2}}^{2}},n為奇數(shù)}\\{\frac{1}{{{a}_{n}}^{2}},n為偶數(shù)}\end{array}\right.$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設x,y滿足$\left\{\begin{array}{l}{y>0}\\{y≤x}\\{|x|+|y|≤1}\end{array}\right.$,則z=x+y的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在二項式($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)6的展開式中,第四項的系數(shù)為$-\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.己知數(shù)列{an},若點(n,an)(n∈N*)在經過點(10,6)的定直線l上,則數(shù)列{an}的前19項和S19=114.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.用黑白兩種顏色隨機地染如圖所示表格中6個格子,每個格子染一種顏色,則有64個不同的染色方法,出現(xiàn)從左至右數(shù),不管數(shù)到哪個格子,總有黑色格子不少于白色格子的概率為$\frac{5}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設a,b是兩條直線,α,β是兩個平面,則a∥b的一個充分條件是(  )
A.a⊥α,b∥β,α⊥βB.a?α,b⊥β,α∥βC.a⊥α,b⊥β,α∥βD.a?α,b∥β,α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.${(2x-\frac{1}{2x})^{10}}$的常數(shù)項為( 。
A.-252B.252C.-210D.210

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.關于x,y的不等式組$\left\{\begin{array}{l}x+y-3≥0\\ x-2y+3≥0\\ x-2≤0\end{array}\right.$,表示的區(qū)域為D,若區(qū)域D內存在滿足t≤3x-y的點,則實數(shù)t的取值范圍為( 。
A.(-∞,1]B.[1,+∞)C.(-∞,5]D.[5,+∞)

查看答案和解析>>

同步練習冊答案