(本小題滿分12分)為了了解2011年某校高三學生的視力情況,隨機抽查了一部分學生視力,將調(diào)查結(jié)果分組,分組區(qū)間為(3.9,4.2],(4.2,4.5],… ,(5.1,5.4].經(jīng)過數(shù)據(jù)處理,得到如下頻率分布表:

分組

頻數(shù)

頻率

(3.9,4.2]

3

0.06

(4.2,4.5]

6

0.12

(4.5,4.8]

25

x

(4.8,5.1]

y

z

(5.1,5.4]

2

0.04

合計

n

1.00

(I)求頻率分布表中未知量n,x,y,z的值;

(II)從樣本中視力在(3.9,4.2]和(5.1,5.4]的所有同學中隨機抽取兩人,求兩人的視力差的絕對值低于0.5的概率.

 

【答案】

解:(I)由表可知,樣本容量為,由,得

;                                      ……3分

                  6分

(II)設(shè)樣本視力在(3.9,4.2]的3人為,

樣本視力在(5.1,5.4]的2人為.                 

由題意,從5人中任取兩人的基本事件共10個:

,且各個基本事件是等可能發(fā)生的.             ….9分

設(shè)事件A表示“抽取的兩人的視力差的絕對值低于0.5”,則事件A包含的基本事件有4個:

,                                       …. …. ….11分

答:抽取的兩人的視力差的絕對值低于0.5的概率為.           …. …. ….12分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案