若θ∈[0,2π),
OP1
=(cosθ,sinθ),
OP2
=(3-cosθ,4-sinθ)
,則
|P1P2|
的取值范圍是( 。
A.[4,7]B.[3,7]C.[3,5]D.[5,6]
|P1P2|
=|
OP2
-
OP1
|=|(3-2cosθ,4-2sinθ)|=
(3-2cosθ )2+(4-2sinθ)2

=
29-12cosθ-16sinθ
=
29-20sin(θ+∅)

其中,tan∅=
3
4
,∅為銳角.
∵θ∈[0,2π),∴-1≤sin(θ+∅)≤1,∴9≤29-20sin(θ+∅)≤49,
∴3≤
29-20sin(θ+∅)
≤7,故
|P1P2|
的取值范圍是[3,7],
故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-3x-x3,x∈R,若θ∈[0,
π2
]
時,不等式f(cos2θ-2t)+f(4sinθ-3)≥0恒成立,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xoy中,角α的始邊與x軸的非負半軸重合且與單位圓相交于A點,它的終邊與單位圓相交于x軸上方一點B,始邊不動,終邊在運動.
(1)若點B的橫坐標為-
4
5
,求tanα的值;
(2)若△AOB為等邊三角形,寫出與角α終邊相同的角β的集合;
(3)若α∈[0,
3
]
,請寫出弓形AB的面積S與α的函數(shù)關(guān)系式,并指出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+1)e2x,若0°<2α<90°,90°<β<180°a=(sinα)cosβ,b=(cosα)sinβ,c=(cosα)cosβ,則f(a),f(b),f(c)的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3(x∈R),若0≤θ<
π
2
時,f(m•sinθ)+f(2-m)>0恒成立,則實數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2cos2x+1

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若α∈(0,
π
2
)
,且f(α)=1,求α的值.

查看答案和解析>>

同步練習冊答案