如圖,已知點(diǎn)B是橢圓+=1(a>b>0)的短軸位于x軸下方的端點(diǎn),過B作斜率為1的直線交橢圓于點(diǎn)M,點(diǎn)P在y軸上,且PM∥x軸,·=9,若點(diǎn)P的坐標(biāo)為(0,t),則t的取值范圍是(  )
A.0<t<3B.0<t≤3
C.0<t<D.0<t≤
C
△BPM為等腰直角三角形,
·=||·||cos45°=||2=9⇒||=3,從而B點(diǎn)的坐標(biāo)為(0,t-3),b=3-t,可知M(3,t),將其代入橢圓方程得a2=,由a2>b2>0得>(3-t)2>0⇒0<t<.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0).
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)過原點(diǎn)O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過P作PM⊥x軸于M,N為PM上一點(diǎn),且
(1)求點(diǎn)N的軌跡C的方程;
(2)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點(diǎn),則是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為,且滿足,試判斷直線是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線-=1(a>0,b>0)和橢圓+=1有相同的焦點(diǎn),且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知任意k∈R,直線y-kx-1=0與橢圓+=1恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(0,1)B.(0,5)
C.[1,5)∪(5,+∞)D.[1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓=1的左焦點(diǎn)為F1,右頂點(diǎn)為A,上頂點(diǎn)為B.若∠F1BA=90°,則橢圓的離心率是(  )
A.  B.  C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,F1F2分別為橢圓=1(ab>0)的左、右焦點(diǎn),B,C分別為橢圓的上、下頂點(diǎn),直線BF2與橢圓的另一個(gè)交點(diǎn)為D,若cos∠F1BF2,則直線CD的斜率為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案