(1)選修4-4:坐標(biāo)系與參數(shù)方程
在曲線數(shù)學(xué)公式數(shù)學(xué)公式
的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
(2)選修4-5;不等式選講
若ab>0,且A(a,0),B(0,b),C(-2,-2)三點(diǎn)共線,求ab的最小值.

解:(1)直線C2化成普通方程是
設(shè)所求的點(diǎn)為P(1+cosθ,sinθ),則P到直線C2的距離
當(dāng)時(shí),即時(shí),d取最小值1,
此時(shí),點(diǎn)P的坐標(biāo)是
(2)解:根據(jù)題意,,即ab=-2(a+b),
∵ab>0,∴a<0,b<0,∴
,∴,∴ab≤16,當(dāng)且僅當(dāng)a=b-4時(shí)等號成立,∴(ab)min=16
分析:(1)把直線C2化成普通方程,求出P(1+cosθ,sinθ)到直線C2的距離,利用正弦函數(shù)取的最大值的條件,求出
θ,即得點(diǎn)P的坐標(biāo).
(2) 由三點(diǎn)共線可得,ab=-2(a+b),利用基本不等式求出ab的最小值.
點(diǎn)評:本題考查點(diǎn)到直線的距離公式的應(yīng)用,三點(diǎn)共線的性質(zhì),基本不等式的應(yīng)用,基本不等式的應(yīng)用是易錯(cuò)點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
A選修4-1:幾何證明選講
如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點(diǎn),過點(diǎn)B作DE的垂線,垂足為點(diǎn)C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實(shí)數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實(shí)數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標(biāo)記用2B鉛筆涂黑,每小題10分,共20分,請?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實(shí)數(shù),如果矩陣M=
1a
b2
所對應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標(biāo)系與參數(shù)方程)
設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動(dòng)點(diǎn),判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•三門峽模擬)(選修4-4:極坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,求圓ρ=
2
上的點(diǎn)到直線ρcos(θ+
π
3
)=1
的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-3:坐標(biāo)系與參數(shù)方程)已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:極坐標(biāo)系與參數(shù)方程
已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(1)化C1,C2的方程為普通方程;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案