求曲線所圍成圖象的面積,其中正確的是(   )

A.                      B.

C.                      D.

 

【答案】

B

【解析】

試題分析:曲線的交點坐標(biāo)為,而且根據(jù)圖象可知的圖象在的下方,所以只有可以表示它們所圍成圖象的面積.

考點:本小題主要考查定積分在幾何中的應(yīng)用.

點評:定積分在幾何中的主要應(yīng)用是求所圍成的圖象的面積,一定要找清楚積分限,而且要搞清楚被積函數(shù)應(yīng)該是誰減去誰.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宣城模擬)已知三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)為R上奇函數(shù),且在x=
3
3
處取得極值-
2
3
9
.記函數(shù)圖象為曲線C.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)設(shè)曲線C與其在點P1(1,f(1))處的切線交于另一點P2(x2,f(x2)),線段P1P2與曲線C所圍成封閉圖形的面積記為S1,求S1的值;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)曲線C與其在點P2處的切線交于另一點P3(x3,f(x3)),線段P2P3與曲線C所圍成封閉圖形的面積記為S2,…,按此方法依次做下去,即設(shè)曲線C與其在點Pn(xn,f(xn))處的切線交于另一點Pn+1(xn+1,f(xn+1)),線段PnPn+1與曲線C所圍成封閉圖形的面積記為Sn,試求Sn關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省宣城市六校高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)為R上奇函數(shù),且在x=處取得極值-.記函數(shù)圖象為曲線C.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)設(shè)曲線C與其在點P1(1,f(1))處的切線交于另一點P2(x2,f(x2)),線段P1P2與曲線C所圍成封閉圖形的面積記為S1,求S1的值;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)曲線C與其在點P2處的切線交于另一點P3(x3,f(x3)),線段P2P3與曲線C所圍成封閉圖形的面積記為S2,…,按此方法依次做下去,即設(shè)曲線C與其在點Pn(xn,f(xn))處的切線交于另一點Pn+1(xn+1,f(xn+1)),線段PnPn+1與曲線C所圍成封閉圖形的面積記為Sn,試求Sn關(guān)于n的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案