精英家教網 > 高中數學 > 題目詳情
如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別是a m(0<a<12)、4m,不考慮樹的粗細.現在想用16m長的籬笆,借助墻角圍成一個矩形的花圃ABCD.設此矩形花圃的最大面積為S,若將這棵樹圍在花圃內,則函數S=f(a)(單位m2)的圖象大致是( )
A.
B.
C.
D.
【答案】分析:為求矩形ABCD面積的最大值S,可先將其面積表達出來,又要注意P點在長方形ABCD內,所以要注意分析自變量的取值范圍,并以自變量的限制條件為分類標準進行分類討論.
解答:解:設AD長為x,則CD長為16-x
又因為要將P點圍在矩形ABCD內,
∴a≤x≤12
則矩形ABCD的面積為x(16-x),
當0<a≤8時,當且僅當x=8時,S=64
當8<a<12時,S=a(16-a)
S=
分段畫出函數圖形可得其形狀與C接近
故選C.
點評:解決本題的關鍵是將S的表達式求出來,結合自變量的取值范圍,分類討論后求出S的解析式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別是a m(0<a<12)、4m,不考慮樹的粗細.現在想用16m長的籬笆,借助墻角圍成一個矩形的花圃ABCD.設此矩形花圃的最大面積為S,若將這棵樹圍在花圃內,則函數S=f(a)(單位m2)的圖象大致是( 。
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖北省宜昌一中高二(下)期中數學試卷(文科)(解析版) 題型:選擇題

如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別是a m(0<a<12)、4m,不考慮樹的粗細.現在想用16m長的籬笆,借助墻角圍成一個矩形的花圃ABCD.設此矩形花圃的最大面積為S,若將這棵樹圍在花圃內,則函數S=f(a)(單位m2)的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省福州市高三(上)期末數學試卷(理科)(解析版) 題型:選擇題

如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別是a m(0<a<12)、4m,不考慮樹的粗細.現在想用16m長的籬笆,借助墻角圍成一個矩形的花圃ABCD.設此矩形花圃的最大面積為S,若將這棵樹圍在花圃內,則函數S=f(a)(單位m2)的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪復習鞏固與練習:二次函數(解析版) 題型:選擇題

如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別是a m(0<a<12)、4m,不考慮樹的粗細.現在想用16m長的籬笆,借助墻角圍成一個矩形的花圃ABCD.設此矩形花圃的最大面積為S,若將這棵樹圍在花圃內,則函數S=f(a)(單位m2)的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案