【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中, 的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中, 的極坐標(biāo)方程.
(Ⅰ)說明是哪種曲線,并將的方程化為普通方程;
(Ⅱ)與有兩個(gè)公共點(diǎn),頂點(diǎn)的極坐標(biāo),求線段的長(zhǎng)及定點(diǎn)到兩點(diǎn)的距離之積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取一人抽到喜歡游泳的學(xué)生的概率為.
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(Ⅱ)針對(duì)問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識(shí)宣傳組,并在這6人中任選兩人作為宣傳組的組長(zhǎng),求這兩人中至少有一名女生的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按題目要求獨(dú)立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學(xué)期望;
(2)請(qǐng)分析比較甲、乙兩人誰(shuí)面試通過的可能性大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在頸椎病患者越來越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:
未過度使用 | 過度使用 | 合計(jì) | |
未患頸椎病 | 15 | 5 | 20 |
患頸椎病 | 10 | 20 | 30 |
合計(jì) | 25 | 25 | 50 |
(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過度使用電子產(chǎn)品有關(guān)?
(2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù)與公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos 2A-3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sin Bsin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2.如果函數(shù)g(x)=f(x)-(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為( )
A.2k(k∈Z) B.2k或2k+ (k∈Z)
C.0 D.2k或2k- (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著機(jī)構(gòu)改革工作的深入進(jìn)行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù)),每人每年可創(chuàng)利b萬元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.01b萬元,但公司需付下崗職員每人每年0.4b萬元的生活費(fèi),并且該公司正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形的長(zhǎng),寬,將其沿對(duì)角線折起,得到四面體,
如圖所示,給出下列結(jié)論:
①四面體體積的最大值為;
②四面體外接球的表面積恒為定值;
③若分別為棱的中點(diǎn),則恒有且;
④當(dāng)二面角為直二面角時(shí),直線所成角的余弦值為;
⑤當(dāng)二面角的大小為時(shí),棱的長(zhǎng)為.
其中正確的結(jié)論有____________________(請(qǐng)寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com