精英家教網 > 高中數學 > 題目詳情
m,n 是正整數,整式f(x)=(1+x)m+(1+x)n中x的 一次項的系數的和為17,
求:(1)f(x)中x2項的系數的最小值;
(2)對(1)中求相應的m,n的值,并求出x5的系數.
(1)∵m,n 是正整數,整式f(x)=(1+x)m+(1+x)n中x的 一次項的系數的和為17,
∴m+n=17,n=17-m,
∴f(x)=(1+x)m+(1+x)n中x2項的系數為:
C2m
+
C2n
=
m(m-1)
2
+
n(n-1)
2
=
1
2
[m2+(17-m)2]-
17
2
=
1
2
×2(m2-17m)+136=(m-
17
2
)
2
+
255
4
,
∵m,n 是正整數,故當m=8或m=9時,
C2m
+
C2n
有最小值64;
(2)當m=8,n=9,x5的系數為:
C58
+
C59
=
C38
+
C49
=56+126=182,
當m=9,n=8,x5的系數為:
C59
+
C58
=182.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

39、設m、n是正整數,整式f(x)=(1-2x)m+(1-5x)n中含x的一次項的系數為-16,則含x2項的系數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

m,n 是正整數,整式f(x)=(1+x)m+(1+x)n中x的 一次項的系數的和為17,
求:(1)f(x)中x2項的系數的最小值;
(2)對(1)中求相應的m,n的值,并求出x5的系數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

m,n 是正整數,整式f(x)=(1+x)m+(1+x)n中x的 一次項的系數的和為17,
求:(1)f(x)中x2項的系數的最小值;
(2)對(1)中求相應的m,n的值,并求出x5的系數.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學單元檢測:排列組合與二項式定理(解析版) 題型:選擇題

設m、n是正整數,整式f(x)=(1-2x)m+(1-5x)n中含x的一次項的系數為-16,則含x2項的系數是( )
A.-13
B.6
C.79
D.37

查看答案和解析>>

同步練習冊答案