在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,…),則an+1與bn+1的大小關(guān)系是
 
分析:首先由等差數(shù)列和等比數(shù)列的性質(zhì)可得a1+a2n+1=2an+1,b1b2n+1=bn+12,然后利用均值不等式求解即可.
解答:解:由等差數(shù)列和等比數(shù)列的性質(zhì)可得a1+a2n+1=2an+1,b1b2n+1=bn+12,
∵a1=b1>0,a2n+1=b2n+1>0,
∴an+1=
a1+a2n+1
2
a1a2n+1
=
b1b2n+1
=bn+1
故答案為an+1≥bn+1
點(diǎn)評(píng):本題在應(yīng)用等差數(shù)列和等比數(shù)列的性質(zhì)的同時(shí),還用到了均值不等式,是一道綜合性題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm(1<m<n)的大小關(guān)系是
am≥bm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)含絕對(duì)值的不等式、不等式的證明專項(xiàng)訓(xùn)練(河北) 題型:填空題

在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm(1<m<n)的大小關(guān)系是__________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,…),則an+1與bn+1的大小關(guān)系是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):6.3 不等式的證明2(解析版) 題型:解答題

在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm(1<m<n)的大小關(guān)系是   

查看答案和解析>>

同步練習(xí)冊(cè)答案