(精典回放)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:①f(-1)=f(1)=0;②對(duì)任意的μ、v∈[-1,1],都有|f(u)-f(v)|≤|μ-v|
(1)證明:對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(2)證明:對(duì)任意的μ、v∈[-1,1],都有
|f(u)-f(v)|≤1;
(3)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的奇函數(shù)y=f(x),且使得:
|f(μ)
-f(v)|<|μ-v|,當(dāng)μ、v∈[0,].|f(μ)
-f(v)|<|μ-v|,當(dāng)μ、v∈[,1].若存在,請(qǐng)舉一例;若不存在,請(qǐng)說(shuō)明理由.
(1)證明:由題設(shè)條件可知,當(dāng)x∈[-1,1]時(shí),有|f(x)|=|f(x)-f(1)|≤|x-1|=1-x. 即:x-1≤f(x)≤1-x. (2)證明:對(duì)任意的u、v∈[-1,1]. 當(dāng)|u-v|≤1時(shí),有|f(u)-f(v)|≤|u-v|≤1. 當(dāng)|u-v|>1時(shí),有u·v<0,不妨設(shè)u<0,則v>0,且v-u>1, 所以|f(u)-f(v)|≤|f(u)-f(-1)|+|f(v)-f(1)|≤|u+1|+|v-1|=1+u+1-v=2-(v-u)<1. 綜上可知:對(duì)任意的u、v∈[-1,1],都有|f(u)-f(v)|≤1. (3)解:滿足所述條件的函數(shù)不存在,理由如下:假設(shè)存在函數(shù)f(x)滿足條件,則由 |f(u)-f(v)|=|u-v|,u、v∈[,1], 得|f()-f(1)|=|-1|=. 又f(1)=0,所以|f()|= 又因?yàn)閒(x)為奇函數(shù),所以f(0)=0. 由條件|f(u)-f(v)|<|u-v|,u,v∈[0,], 得|f()|=|f()-f(0)|<. 這與|f()|=矛盾,所以假設(shè)不成立,即這樣的函數(shù)不存在. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com