精英家教網 > 高中數學 > 題目詳情
如圖四邊形ABCD是菱形,PA⊥平面ABCD,Q為PA的中點.
求證:(1)PC∥平面QBD;
(2)平面QBD⊥平面PAC.

【答案】分析:(1)欲證PC∥平面QBD,根據線面平行的判定定理可知只需在平面QBD內找一直線與之平行,設AC∩BD=O,連OQ,易證OQ∥PC;
(2)欲證平面QBD⊥平面PAC,根據線面垂直的判定定理可知只需證BD⊥平面PAC,而易證BD⊥AC與PA⊥BD.
解答:證:設AC∩BD=O,連OQ.
(1)∵ABCD為菱形,∴O為AC中點,又Q為PA中點.
∴OQ∥PC (5分)
又PC?平面QBD,OQ?平面QBD,
∴PC∥平面QBD (7分)
(2)∵ABCD為菱形,∴BD⊥AC,(9分)
又∵PA⊥平面ABCD,BD?平面ABCD∴PA⊥BD (12分)
又PA∩AC=A∴BD⊥平面PAC又BD?平面QBD
∴平面QBD⊥平面PAC (14分)
點評:本題主要考查了直線與平面之間的位置關系,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

15、如圖四邊形ABCD是菱形,PA⊥平面ABCD,Q為PA的中點.
求證:(1)PC∥平面QBD;
(2)平面QBD⊥平面PAC.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖四邊形ABCD是菱形,PA⊥平面ABCD,Q為PA的中點.
求證:(1)PC平面QBD;
(2)平面QBD⊥平面PAC.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四邊形ABCD是直角梯形,AB∥CD,∠ADC=∠DAB=90°,CD=2AB,PA⊥平面ABCD,PA=AB=AD=1,Q是PC的中點.

(1)求證:BQ∥平面PAD;

(2)如果點E是線段CD中點,求三棱錐Q—BEC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四邊形ABCD是直角梯形,AB∥CD,∠ADC=∠DAB=90°,CD=2AB,

PA⊥平面ABCD,PA=AB=AD,Q是PC的中點.

(1)求證:BQ∥平面PAD;

(2)探究在過BQ且與底面ABCD相交的平面中是否存在一個平面α,把四棱錐P—ABCD截成兩部分,使得其中一部分為一個四個面都是直角三角形的四面體.若存在,求平面PBC與平面α所成銳二面角的余弦值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案