已知P(x,y)是中心在原點(diǎn),焦距為10的雙曲線上一點(diǎn),且數(shù)學(xué)公式的取值范圍為(-數(shù)學(xué)公式,數(shù)學(xué)公式),則該雙曲線方程是


  1. A.
    數(shù)學(xué)公式-數(shù)學(xué)公式=1
  2. B.
    數(shù)學(xué)公式-數(shù)學(xué)公式=1
  3. C.
    數(shù)學(xué)公式-數(shù)學(xué)公式=1
  4. D.
    數(shù)學(xué)公式-數(shù)學(xué)公式=1
C
分析:根據(jù)直線的斜率公式和雙曲線的漸近線方程,結(jié)合題意得到=,再由平方關(guān)系得到a2+b2=25,聯(lián)解可得a、b的值,即可得到該雙曲線方程.
解答:∵雙曲線-=1(a>b>0)的漸近線為y=±
∴動(dòng)點(diǎn)P(x,y)與原點(diǎn)連線的斜率為k=且k∈(-,
∵由已知的取值范圍為(-,),∴=…①
又∵雙曲線的焦距為2c=10,得c=5
∴a2+b2=c2=25…②
聯(lián)解①②,可得a=4,b=3,所以雙曲線方程為-=1
故選:C
點(diǎn)評:本題給出雙曲線的焦距,在已知曲線上動(dòng)點(diǎn)P與原點(diǎn)連線斜率范圍的情況下求雙曲線的方程,著重考查了雙曲線的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列三個(gè)命題:
①若z1,z2∈C且z1-z2>0,則z1>z2
②如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對應(yīng)點(diǎn)的軌跡為橢圓.
③已知曲線C:
x2
-
y2
=1
和兩定點(diǎn)F1(-
2
,0)
,F(xiàn)2(
2
,0)
,若P(x,y)是C上的動(dòng)點(diǎn),則||PF1|-|PF2||是定值.
上述命題中正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對應(yīng)點(diǎn)的軌跡是橢圓.
②若對任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①命題“若ab≠0,則a≠0且b≠0”的逆否命題是真命題;
②命題“y=sinx是周期函數(shù)”的否定是“y=sinx不是周期函數(shù)”;
③如果p∨q為真命題,則p∧q也一定是真命題; 
④已知p:?x∈R,x2+x+1<0,則¬p:?x∈R,x2+x-1≥0;
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)精品復(fù)習(xí)13:直線的方程、兩條直線的位置關(guān)系、線性規(guī)劃(解析版) 題型:解答題

①已知P(x,y)是直線l:f(x,y)=0外一點(diǎn),則直線f(x,y)+f(x,y)=0與直線l的位置關(guān)系是    
②設(shè)a、b、c分別是△ABC中角A、B、C的對邊,則直線:xsinA+ay+c=0與直線bx-ysinB+sinC=0的位置關(guān)系是    

查看答案和解析>>

同步練習(xí)冊答案