精英家教網 > 高中數學 > 題目詳情
如圖所示,四棱錐P-ABCD的底面是邊長為a的正方形,側棱PA⊥底面ABCD,側面PBC內有BE⊥PC于E,且BE=a,試在AB上找一點F,使EF∥平面PAD.

【答案】分析:畫出圖形,過E作EG∥CD交PD于G,連接AG,在AB上取點F,使AF=EG,要證明EF∥平面PAD,只需證明FE∥AG即可;然后確定F的位置.
解答:解:在平面PCD內,過E作EG∥CD交PD于G,連接AG,
在AB上取點F,使AF=EG,則F即為所求作的點.
∵EG∥CD∥AF,EG=AF,
∴四邊形FEGA為平行四邊形,
∴FE∥AG.
又AG?平面PAD,FE?平面PAD,
∴EF∥平面PAD.
又在Rt△BCE中,
CE=
==a.
在Rt△PBC中,BC2=CE•CP
∴CP==a.又=,
∴EG=•CD=a,
∴AF=EG=a.
∴點F為AB的一個三等分點.
點評:本題考查直線與平面平行的判定,考查學生的邏輯思維能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,四棱錐P-ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點.
(Ⅰ)求證:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大;
(Ⅲ)求點B到平面PDE的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示,四棱錐P-ABCD的底面是一個矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱錐P-ABCD的體積.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內接四邊形,其中BD是圓的直徑,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求線段PD的長;
(2)若PC=
11
R
,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•煙臺一模)如圖所示,四棱錐P-ABCD中,ABCD為正方形,PA⊥AD,E,F,G分別是線段PA,PD,CD的中點.
求證:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,四棱錐P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點,PA=AD=AB=1.
(1)證明:EB∥平面PAD;
(2)證明:BE⊥平面PDC;
(3)求三棱錐B-PDC的體積V.

查看答案和解析>>

同步練習冊答案