7.已知關(guān)于x的不等式x2-mx-2n<0的解集為(-1,3)
(1)求不等式x2-x-m>0的解集;
(2)求不等式組$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$所表示的平面區(qū)域的面積.

分析 (1)根據(jù)不等式的解集和對(duì)應(yīng)方程之間的關(guān)系求出m,n即可求不等式x2-x-m>0的解集;
(2)化簡(jiǎn)不等式組$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$,利用二元一次不等式組表示平面區(qū)域,作出對(duì)應(yīng)的平面區(qū)域,根據(jù)梯形的面積公式進(jìn)行求解即可.

解答 解:(1)∵不等式x2-mx-2n<0的解集為(-1,3),
∴-1和3是方程x2-mx-2n=0的根,
則-1+3=m,-1×3=-2n,
即m=2,n=$\frac{3}{2}$,
則不等式x2-x-m>0為x2-x-2>0,
解得x>2或x<-1,
即不等式的解集為{x|x>2或x<-1};
(2)不等式組$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$等價(jià)為$\left\{\begin{array}{l}{{x}^{2}-3x+2≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$,
即$\left\{\begin{array}{l}{1≤x≤2}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$,
則對(duì)應(yīng)的平面區(qū)域?yàn)榈妊菪蜛BCD,
由$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{x=1}\\{2x+3y=6}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=\frac{4}{3}}\end{array}\right.$,即B(1,$\frac{4}{3}$),
由$\left\{\begin{array}{l}{x=2}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即D(2,3),
由$\left\{\begin{array}{l}{x=2}\\{2x+3y=6}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=\frac{2}{3}}\end{array}\right.$,即C(2,$\frac{2}{3}$),
則AB=2-$\frac{4}{3}$=$\frac{2}{3}$,CD=3-$\frac{2}{3}$=$\frac{7}{3}$,梯形的高為1,
則平面區(qū)域的面積S=$\frac{\frac{2}{3}+\frac{7}{3}}{2}×1$=$\frac{3}{2}$.

點(diǎn)評(píng) 本題主要考查一元二次不等式的求解以及二元一次不等式組表示平面區(qū)域,利用一元二次方程與不等式的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a∈R,若x<0時(shí),均有[(a+1)x-1](x2-ax-1)≥0,則a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lg(10x+a)是定義域?yàn)镽上的奇函數(shù),h(x)=tf(x).
(1)求實(shí)數(shù)a的值;
(2)若h(x)≤xlog3x在x∈[3,8]上恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在數(shù)列{an}中,設(shè)a1=a2=2,a3=4,若數(shù)列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$為等差數(shù)列,則a5=48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象經(jīng)過點(diǎn)(0,$\frac{1}{2}$),對(duì)任意的x都有f(x1)≤f(x)≤f(x2),且|x2-x1|的最小值為$\frac{π}{2}$.
(1)求f($\frac{π}{12}$)的值;
(2)求函數(shù)f(x)在[-$\frac{π}{2}$,$\frac{3π}{2}$]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.49${\;}^{lo{g}_{\frac{1}{7}}3}$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知p:$\left\{\begin{array}{l}{lg|x|≤1}\\{{2}^{x+2}≥1}\end{array}\right.$,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍( 。
A.(-∞,9]B.[9,+∞)C.(-∞,3]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若關(guān)于x的方程[f(x)]3-a|f(x)|+2=0有兩個(gè)不等實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A.(0,1)B.(1,3)C.(-1,3)D.(3,∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x+x-1=5,求$\frac{x-{x}^{-1}}{{x}^{\frac{1}{2}}-{x}^{\frac{-1}{2}}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案