如圖,過橢圓
上的動點
引
圓
的兩條切線
,其中
分別為切點,,若橢圓上存在點
,使
,則該橢圓的離心率為____________.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(
本小題滿分12分)
在直角坐標(biāo)系
中,橢圓
的左、右焦點分別為
. 其中
也是拋物線
的焦點,點
為
與
在第一象限的交點,且
(Ⅰ)求
的方程;
(Ⅱ)若過點
的直線
與
交于不同的兩點
.
在
之間,試求
與
面積之比的取值范圍.(
O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本小題滿分12分)
已知橢圓的中心為坐標(biāo)原點O,焦點在x軸上,橢圓短半軸長為1,動點
在直線
上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以
OM為直徑且被直線
截得的弦長為2的圓的方程;
(3)設(shè)
F是橢圓的右焦點,過點
F作
OM的垂線與以
OM為直徑的圓交于點
N,求證:線段
ON的長為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,已知橢圓
的離心率為
,短軸的一個端點到右焦點的距離為
.設(shè)直線
與橢圓
相交于
兩點,點
關(guān)于
軸對稱點為
.
(1)求橢圓
的方程;
(2)若以線段
為直徑的圓過坐標(biāo)原點
,求直線
的方程;
(3)試問:當(dāng)
變化時,直線
與
軸是否交于一個定點?若是,請寫出定點的坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
:已知橢圓P的中心O在坐標(biāo)原點,焦點在
x坐標(biāo)軸上,且經(jīng)過點
,離心率為
(1)求橢圓P的方程:
(2)是否存在過點E(0,-4)的直線
l交橢圓P于點R,T,且滿足
.若存在,求直線
l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
和雙曲線
有相同的焦點,則實數(shù)
的值是( )
A
B
C 5 D 9
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
,過右焦點
斜率為
的直線與橢圓
交于
、
兩
點,若
,則橢圓
的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
的左、右焦點分別為F
1 F
2,以F
1 F
2為直徑的圓與橢圓在y軸左側(cè)的部分交于A,B兩點,且ΔF
2AB是等邊三角形,則橢圓的離心率為______
查看答案和解析>>