【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實(shí)數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.

【答案】
(1)解:f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx+ +1﹣a,

若f(x)在(0,+∞)上單調(diào)遞增,

則a≤lnx+ +1在(0,+∞)恒成立,(a>0),

令g(x)=lnx+ +1,(x>0),

g′(x)= ,

令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,

故g(x)在(0,1)遞減,在(1,+∞)遞增,

故g(x)min=g(1)=2,

故0<a≤2;


(2)解:若不等式(x﹣1)f(x)≥0恒成立,

即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,

①x≥1時(shí),只需a≤(x+1)lnx恒成立,

令m(x)=(x+1)lnx,(x≥1),

則m′(x)=lnx+ +1,

由(1)得:m′(x)≥2,

故m(x)在[1,+∞)遞增,m(x)≥m(1)=0,

故a≤0,而a為正實(shí)數(shù),故a≤0不合題意;

②0<x<1時(shí),只需a≥(x+1)lnx,

令n(x)=(x+1)lnx,(0<x<1),

則n′(x)=lnx+ +1,由(1)n′(x)在(0,1)遞減,

故n′(x)>n(1)=2,

故n(x)在(0,1)遞增,故n(x)<n(1)=0,

故a≥0,而a為正實(shí)數(shù),故a>0.


【解析】(1)求出函數(shù)f(x)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≤lnx+ +1在(0,+∞)恒成立,(a>0),令g(x)=lnx+ +1,(x>0),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;(2)問題轉(zhuǎn)化為(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通過討論x的范圍,結(jié)合函數(shù)的單調(diào)性求出a的范圍即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長(zhǎng)方形,且,的中點(diǎn),作于點(diǎn).

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)直線過點(diǎn)(2,3),且當(dāng)傾斜角是直線的傾斜角的二倍時(shí),求直線方程.

)當(dāng)與軸正半軸交于點(diǎn)、軸正半軸交于點(diǎn),且的面積最小時(shí),求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則

)函數(shù)定義域?yàn)?/span>__________

)函數(shù)導(dǎo)函數(shù)為__________

)對(duì)函數(shù)單調(diào)研究如下

____

)設(shè)函數(shù)

函數(shù)的最大值為__________

5)函數(shù)極值點(diǎn)共__________個(gè),6其中極小值點(diǎn)有__________個(gè).

7)若關(guān)于的方程恰有三個(gè)不相同的實(shí)數(shù)解,則的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓心為,定點(diǎn), 為圓上一點(diǎn),線段上一點(diǎn)滿足,直線上一點(diǎn),滿足

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線相切,并與軌跡交于不同的兩點(diǎn).當(dāng)且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某山區(qū)小學(xué)有100名四年級(jí)學(xué)生,將全體四年級(jí)學(xué)生隨機(jī)按0099編號(hào),并且按編號(hào)順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號(hào)按依次增加10進(jìn)行系統(tǒng)抽樣.

1)若抽出的一個(gè)號(hào)碼為22,則此號(hào)碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號(hào)碼;

2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績(jī),獲得成績(jī)數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;

3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績(jī)不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績(jī)之和不小于154分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列結(jié)論正確的是( )

A. 至少與,中的一條相交 B. 都不相交

C. ,都相交 D. 至多與,中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左右焦點(diǎn)分別為、,離心率.過的直線交橢圓于、兩點(diǎn),三角形的周長(zhǎng)為.

(1)求橢圓的方程;

(2)若弦,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , , ,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該球的體積為( )

A. B. C. D.

【答案】D

【解析】在三棱錐中,因?yàn)?/span>, , ,所以,則該幾何體的外接球即為以為棱長(zhǎng)的長(zhǎng)方體的外接球,則 ,其體積為 ;故選D.

點(diǎn)睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長(zhǎng)方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長(zhǎng)方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長(zhǎng)的長(zhǎng)方體的外接球,也是處理本題的技巧所在.

型】單選題
結(jié)束】
21

【題目】已知函數(shù),則的大致圖象為(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案