要制作一個如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個矩形,EFCD是一個等腰梯形,梯形高h(yuǎn)=AB,tan∠FED=,設(shè)AB=xm,BC=y(tǒng)m.
 
(1)求y關(guān)于x的表達(dá)式;
(2)如何設(shè)計x、y的長度,才能使所用材料最少?

(1)y=x (2)AB=3m,BC=4m

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為偶函數(shù).
(1)求的值;
(2)若方程有且只有一個根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)設(shè),,,證明:在區(qū)間內(nèi)存在唯一的零點;
(2)設(shè),若對任意、,有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,ABCD是正方形空地,邊長為30m,電源在點P處,點P到邊AD、AB距離分別為9m、3m.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕MNEF,MN∶NE=16∶9.線段MN必須過點P,端點M、N分別在邊AD、AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
 
(1)用x的代數(shù)式表示AM;
(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時,液晶廣告屏幕MNEF的面積S最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=-ax2,a∈R.
(1)當(dāng)a=2時,求函數(shù)f(x)的零點;
(2)當(dāng)a>0時,求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個零點;
(3)若函數(shù)f(x)有四個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=|2x-1-1|.
(1)作出函數(shù)y=f(x)的圖象;
(2)若a<c,且f(a)>f(c),求證:2a+2c<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

作函數(shù)的y= [3(x+1)]圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=1-2ax-a2x(a>1).
(1)求函數(shù)f(x)的值域;
(2)若x∈[-2,1]時,函數(shù)f(x)的最小值是-7,求a的值及函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如果對任意實數(shù)x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.

查看答案和解析>>

同步練習(xí)冊答案