2.曲線C:$\frac{x^2}{4}$+$\frac{y^2}{b^2}$=1(b>0)與直線l:kx-y+k+2=0恒有公共點,則b的取值范圍是$[\frac{{4\sqrt{3}}}{3},+∞)$.

分析 求出直線系經(jīng)過的定點,通過定點在橢圓以及內(nèi)部,求解即可.

解答 解:直線l:kx-y+k+2=0恒過(-1,2),
曲線C:$\frac{x^2}{4}$+$\frac{y^2}{b^2}$=1(b>0)與直線l:kx-y+k+2=0恒有公共點,
可得$\frac{1}{4}+\frac{4}{^{2}}≤1$,
∵b>0,∴b≥$\frac{4\sqrt{3}}{3}$.
故答案為:$[\frac{{4\sqrt{3}}}{3},+∞)$.

點評 本題考查直線與橢圓的位置關(guān)系的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x|x2<2x},集合B={x|x<$\frac{1}{2}$},則A∩(∁RB)等于( 。
A.(-2,$\frac{1}{3}$]B.(2,+∞)C.(-∞,$\frac{1}{2}$]D.D[$\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于x,y的方程y=mx+n和$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1在同一坐標系中的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=sin4x+cos4x的最小正周期是$\frac{π}{2}$;單調(diào)遞增區(qū)間是[-$\frac{π}{4}$+$\frac{kπ}{2}$,$\frac{kπ}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,直角三角形ACB的斜邊AB=2$\sqrt{3}$,∠ABC=$\frac{π}{6}$,點P是以點C為圓心1為半徑的圓上的動點.
(Ⅰ)當點P在三角形ABC外,且CP⊥AB時,求sin∠PBC;
(Ⅱ)求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合A={x|1<x<3},集合B={x|-1<x<2},則A∩B=(  )
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=[x2-(b+2)x+1]ex,b為實常數(shù).
(Ⅰ)當b=0時,討論函數(shù)的單調(diào)性;
(Ⅱ)若f(x)在[-|b|,|b|](b≠0)上單調(diào)遞減,求b的取值范圍;
(Ⅲ)設(shè)f(x)在[-1,1]上的最小值和最大值分別為m,M,若m•M=-12,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知F為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0、b>0)的焦點,若曲線C上存在點P,使得直線FP與以坐標原點為圓心,半徑是b的圓切于P點,則該雙曲線的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知S=12-22+32-42+…+(n-1)2-n2,請設(shè)計程序框圖,算法要求從鍵盤輸入n,輸出S.并寫出計算機程序.

查看答案和解析>>

同步練習(xí)冊答案