求過點(diǎn)(2,3)且在兩軸上截距相等的直線方程.

直線方程為y=-x+5或.


解析:

由條件知該直線的斜率存在且不為0,由點(diǎn)斜式可設(shè)直線方程為y-3=k(x-2).

x=0,得直線在y軸上截距為y=3-2k.

y=0,得直線在x軸上截距為.

,得k=-1或.

故直線方程為y=-x+5或.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xoy中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求過點(diǎn)F,且與直線OA垂直的直線的方程;
(3)設(shè)過點(diǎn)M(m,0)(m>0)的直線交拋物線C于D、E兩點(diǎn),ME=2DM,記D和E兩點(diǎn)間的距離為f(m),求f(m)關(guān)于m的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinωx(ω>0).
(1)當(dāng)ω=1時(shí),寫出由y=f(x)的圖象向右平移
π
6
個(gè)單位長(zhǎng)度得到的圖象所對(duì)應(yīng)的函數(shù)解析式;
(2)若y=f(x)圖象過點(diǎn)(
3
,0)
,且在區(qū)間(0,
π
3
)
上是增函數(shù),求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以C(1,-2)為圓心的圓與直線x+y+3
2
+1=0
相切.
(1)求圓C的方程;
(2)求過點(diǎn)(3,4)且截圓C所得的弦長(zhǎng)為2
5
的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)滿足:①在x=1時(shí)有極值;②圖象過點(diǎn)(0,-3),且在該點(diǎn)處的切線與直線2x+y=0平行.

(1)求f(x)的解析式;

(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案