【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設(shè)函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.
【答案】
(1)解:∵函數(shù)f(x)=ax2﹣x+2a﹣1(a>0)的圖象是開口朝上,且以直線x= 為對稱軸的拋物線,
若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù)
則 ,
解得:
(2)解:①當0< <1,即a> 時,f(x)在區(qū)間[1,2]上為增函數(shù),
此時g(a)=f(1)=3a﹣2
②當1≤ ≤2,即 時,f(x)在區(qū)間[1, ]是減函數(shù),在區(qū)間[ ,2]上為增函數(shù),
此時g(a)=f( )=
③當 >2,即0<a< 時,f(x)在區(qū)間[1,2]上是減函數(shù),
此時g(a)=f(2)=6a﹣3
綜上所述:
(3)解:對任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,
即f(x)min≥h(x)max,
由(2)知,f(x)min=g(a)
又因為函數(shù) ,
所以函數(shù)h(x)在[1,2]上為單調(diào)減函數(shù),所以 ,
① 當 時,由g(a)≥h(x)max得: ,解得 ,(舍去)
②當 時,由g(a)≥h(x)max得: ,即8a2﹣2a﹣1≥0,
∴(4a+1)(2a﹣1)≥0,解得
所以
③當 時,由g(a)≥h(x)max得: ,解得 ,
所以a
綜上所述:實數(shù)a的取值范圍為
【解析】(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),則 ,解得a的取值范圍;(2)分類討論給定區(qū)間與對稱軸的關(guān)系,分析出各種情況下g(x)的表達式,綜合討論結(jié)果,可得答案;(3)不等式f(x1)≥h(x2)恒成立,即f(x)min≥h(x)max , 分類討論各種情況下實數(shù)a的取值,綜合討論結(jié)果,可得答案.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)g(x)=x2﹣2x+1+mlnx,(m∈R).
(1)當m=1時,求函數(shù)y=g(x)在點(1,0)處的切線方程;
(2)當m=﹣12時,求f(x)的極小值;
(3)若函數(shù)y=g(x)在x∈( ,+∞)上的兩個不同的數(shù)a,b(a<b)處取得極值,記{x}表示大于x的最小整數(shù),求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標;
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)y=3cosx的圖象,只需將函數(shù)y=3sin(2x﹣ )的圖象上所有點的( )
A.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向左平移 個單位長度
B.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向右平移 個單位長度
C.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向左平移 個單位長度
D.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不少于900人運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差 和 ,并由此分析兩組技工的加工水平.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x﹣2)﹣ ,(a為常數(shù)且a≠0),若f(x)在x0處取得極值,且x0[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,則a的取值范圍( )
A.a≥e4+2e2
B.a>e2+2e
C.a≥e2+2e
D.a>e4+2e2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com