已知f(x)為偶函數(shù)且
6
-6
f(x)dx=8,則
6
0
f(x)dx等于( 。
分析:根據(jù)定積分的幾何意義知,定積分的值∫-66f(x)dx是f(x)的圖象與x軸、x=-6、x=6所圍成的曲邊梯形的面積,由
6
-6
f(x)dx=8,結(jié)合偶函數(shù)的圖象的對稱性即可解決問題.
解答:解:由∫-66f(x)dx=
0
-6
f(x)dx+∫06f(x)dx.
∵原函數(shù)為偶函數(shù),
∴在y軸兩側(cè)的圖象對稱,y軸兩側(cè)對應(yīng)的曲邊梯形面積相等,
則∫-66f(x)dx=2∫06f(x)dx=8.
6
0
f(x)dx=4.
故選:B.
點(diǎn)評:本題考查了定積分,考查了微積分基本定理,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),且x>0時(shí),f(x)=
1
a
-
1
x
(a>0)

(1)判斷函數(shù)f(x)在(0,∞)上的單調(diào)性,并證明;
(2)若f(x)在[
1
2
,2]
上的值域是[
1
2
,2]
,求a的值;
(3)求x∈(-∞,0)時(shí)函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),它在零到正無窮上是增函數(shù),求f(2m-3)<f(8)的m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),且f(1+x)=f(3-x),當(dāng)-2≤x≤0時(shí),f(x)=3x,則f(2011)=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),當(dāng)x≥0時(shí),f(x)=-(x-1)2+1,滿足f[f(a)]=
1
2
的實(shí)數(shù)a的個(gè)數(shù)為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),x≥0 時(shí),f(x)=x3-8,則f(x-2)>0的解集為
 

查看答案和解析>>

同步練習(xí)冊答案