分析 (1)由a2=4,S5=30,得 $\left\{\begin{array}{l}{{a}_{1}+d=4}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$ 解得 首項a1和公差d的值
(2)可得 ${s}_{n}={n}^{2}+n$,bn=$\frac{1}{S_n}$=$\frac{1}{{n}^{2}+n}=\frac{1}{n}-\frac{1}{n+1}$,累加即可.
解答 解:(1)因為{an}是等差數(shù)列,a2=4,S5=30,
所以 $\left\{\begin{array}{l}{{a}_{1}+d=4}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$
解得 a1=2,d=2
(2)由(1)知 ${s}_{n}=n{a}_{1}+\frac{n(n-1)d}{2}=2n+\frac{n(n-1)}{2}×2$
即 ${s}_{n}={n}^{2}+n$
所以bn=$\frac{1}{S_n}$=$\frac{1}{{n}^{2}+n}=\frac{1}{n}-\frac{1}{n+1}$
于是數(shù)列{bn}的前n項和 Tn=b1+b2+b3+…+bn=(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$
點評 本題考查了等差數(shù)列的通項、裂項求和,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com