設函數(shù)f (x)=
2
3
x-1(x≥0)
1
x
    (x<0)
,若f (a)=a,則實數(shù)a的值是
-1
-1
分析:當a≥0時,由
2
3
a-1
=a,解得a的值,當a<0時,由
1
a
=a,解得a的值,綜合可得結論.
解答:解:當a≥0時,由
2
3
a-1
=a,解得a=-3 (舍去).
當a<0時,由
1
a
=a,解得a=-1,
故答案為-1.
點評:本題主要考查利用分段函數(shù)求函數(shù)的值,體現(xiàn)了分類討論的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)在(-∞,+∞)內有定義,對于給定的正數(shù)k,定義函數(shù)fk(x)=
f(x),f(x)≤k
k,f(x)>k
.設函數(shù)f(x)=2+x-ex,若對任意的x∈(-∞,+∞)恒有fk(x)=f(x),則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)當
a
b
時,求cos2x-sin2x的值;
(2)設函數(shù)f(x)=2(
a
+
b
)•
b
,求f(x)的值域.(其中x∈(0,
24
))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2|x+1-|x-1|,則滿足f(x)≥2
2
的x取值范圍為
[
3
4
,+∞)
[
3
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2-x -1  x≤0
x
1
2
x>0
,則f[f(-1)]=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2,x<1
x-1
,x≥1
 則f(f(f(1)))=
1
1

查看答案和解析>>

同步練習冊答案