【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元(如圖).

(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?

【答案】
(1)解:f(x)=k1x,g(x)=

f(1)= =k1,g(1)=k2=

∴f(x)= x(x≥0),g(x)= (x≥0)


(2)解:設(shè):投資債券類產(chǎn)品x萬(wàn)元,則股票類投資為20﹣x萬(wàn)元.

y=f(x)+g(20﹣x)= (0≤x≤20)

令t= ,則y= =﹣

所以當(dāng)t=2,即x=16萬(wàn)元時(shí),收益最大,ymax=3萬(wàn)元


【解析】(1)由投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,結(jié)合函數(shù)圖象,我們可以利用待定系數(shù)法來(lái)求兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;(2)由(1)的結(jié)論,我們?cè)O(shè)設(shè)投資債券類產(chǎn)品x萬(wàn)元,則股票類投資為20﹣x萬(wàn)元.這時(shí)可以構(gòu)造出一個(gè)關(guān)于收益y的函數(shù),然后利用求函數(shù)最大值的方法進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若是函數(shù)的極值點(diǎn),1為函數(shù)的一個(gè)零點(diǎn),求函數(shù)上的最小值.

(2)當(dāng)時(shí),函數(shù)軸在內(nèi)有兩個(gè)不同的交點(diǎn),求的取值范圍.(其中是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一顆骰子投擲兩次分別得到點(diǎn)數(shù)a,b則直線axby=0與圓(x2)2y22相交的概率為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在函數(shù))的所有切線中,有且僅有一條切線與直線垂直.

(1)求的值和切線的方程;

(2)設(shè)曲線在任一點(diǎn)處的切線傾斜角為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四面體的棱長(zhǎng)為 為棱的中點(diǎn),過(guò)作其外接球的截面,則截面面積的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤()、().兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為、、.用這兩個(gè)轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無(wú)效,重新開(kāi)始),記轉(zhuǎn)盤()指針?biāo)鶎?duì)的數(shù)為,轉(zhuǎn)盤()指針?biāo)鶎?duì)的數(shù)為,(、),求下列概率:

(1);

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次運(yùn)動(dòng)會(huì)中甲、乙兩名射擊運(yùn)動(dòng)員決賽中各射擊十次的成績(jī)(環(huán))如下:

(1)用莖葉圖表示甲、乙兩個(gè)人的成績(jī);

(2)根據(jù)莖葉圖分析甲、乙兩人的成績(jī);

(3)計(jì)算兩個(gè)樣本的平均數(shù)和標(biāo)準(zhǔn)差,并根據(jù)計(jì)算結(jié)果估計(jì)哪位運(yùn)動(dòng)員的成績(jī)比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所發(fā)現(xiàn),一種作物的年收獲量 (單位: )與它“相近”作物的株數(shù) 具有線性相關(guān)關(guān)系(所謂兩株作物“相近”是指它們的直線距離不超過(guò) ),并分別記錄了相近作物的株數(shù)為 時(shí),該作物的年收獲量的相關(guān)數(shù)據(jù)如下:

(1)求該作物的年收獲量 關(guān)于它“相近”作物的株數(shù) 的線性回歸方程;

(2)農(nóng)科所在如圖所示的直角梯形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn))處都種了一株該作物,圖中

每個(gè)小正方形的邊長(zhǎng)均為 ,若從直角梯形地塊的邊界和內(nèi)部各隨機(jī)選取一株該作物,求這兩株作物 “相

近”且年產(chǎn)量?jī)H相差 的概率.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估

計(jì)分別為, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知直線l1 ),拋物線C t為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線l1 和拋物線C的極坐標(biāo)方程;

(Ⅱ)若直線l1 和拋物線C相交于點(diǎn)A(異于原點(diǎn)O),過(guò)原點(diǎn)作與l1垂直的直線l2,l2和拋物線C相交于點(diǎn)B(異于原點(diǎn)O),求△OAB的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案