橢圓的左、右焦點分別為
和
,且橢圓過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
作不與
軸垂直的直線
交該橢圓于
兩點,
為橢圓的左頂點,試判斷
的大小是否為定值,并說明理由.
(I)
;(II)是定值90
0 .
試題分析:(I)設橢圓的方程為
,有
,得
,把
代入橢圓方程得
,從而求出
,即可求出橢圓方程;(II)利用直線與圓錐曲線相交的一般方法,將直線方程與橢圓方程聯(lián)立方程組,利用韋達定理,求
,繼而判定是否為定值。
試題解析:(I)設橢圓的方程為
,由于焦點為
, 可知
,即
,把
代入橢圓方程得
,解得
,故橢圓的方程為
;
(II)設直線
的方程為
,
聯(lián)立方程組可得
,化簡得:
,
設
,則
,又
,
,由
得
,
所以
,所以
,所以
為定值.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在直角坐標系
中,點
到兩點
的距離之和等于4,設點
的軌跡為
,直線
與
交于
兩點.
(1)寫出
的方程;
(2)若點
在第一象限,證明當
時,恒有
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
+
=1(a>b>0)的焦距為4,且與橢圓x
2+
=1有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同的兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為
、
,P為橢圓
上任意一點,且
的最小值為
.
(1)求橢圓
的方程;
(2)動圓
與橢圓
相交于A、B、C、D四點,當
為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的右焦點為
,
為橢圓的上頂點,
為坐標原點,且兩焦點和短軸的兩端構(gòu)成邊長為
的正方形.
(1)求橢圓的標準方程;
(2)是否存在直線
交與橢圓于
,
,且使
,使得
為
的垂心,若存在,求出
點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的左焦點作互相垂直的兩條直線,分別交橢圓于
四點,則四邊形
面積的最小值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,等腰梯形
中,
且
,
. 以
,
為焦點,且過點
的雙曲線的離心率為
;以
,
為焦點,且過點
的橢圓的離心率為
,則
的取值范圍為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的左焦點為
,過點
的直線交橢圓于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點.
(1)若點
的橫坐標為
,求直線
的斜率;
(2)記△
的面積為
,△
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>