如圖,在半徑為的圓中,弦、相交于,,,則圓心到弦的距離為 .

 

 

【答案】

【解析】

試題分析:由相交弦定理得,,,圓心到弦的距離為.

考點(diǎn):圓的性質(zhì),相交弦定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為l的球O中.AB、CD是兩條互相垂直的直徑,半徑OP⊥平面ACBD.點(diǎn)E、F分別為大圓上的劣弧
BP
、
AC
的中點(diǎn),給出下列結(jié)論:
①E、F兩點(diǎn)的球面距離為
2
3
π
;
②向量
.
OE
在向量
.
OB
方向上的投影恰為
1
2
;
③若點(diǎn)M為大圓上的劣弧
AD
的中點(diǎn),則過點(diǎn)M且與直線EF、PC成等角的直線有無數(shù)條;
④球面上到E、F兩點(diǎn)等距離的點(diǎn)的軌跡是兩個點(diǎn);
其中你認(rèn)為正確的所有結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R、圓心角為
π3
的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù).
(2)現(xiàn)用EP和FQ作為母線并焊接起來,將長方形EFPQ制成圓柱的側(cè)面,能否從△OEF中直接剪出一個圓面作為圓柱形容器的底面?如果不能請說明理由.如果可能,求出側(cè)面積最大時容器的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為R、圓心角為
π3
的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù);
(2)在余下的邊角料中在剪出兩個圓(如圖所示),試問當(dāng)矩形EPQF的面積最大時,能否由這個矩形和兩個圓組成一個有上下底面的圓柱?如果可能,求出此時圓柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都二模)如圖,在半徑為l的球O中.AB、CD是兩條互相垂直的直徑,半徑OP⊥平面ABCD.點(diǎn)E、F分別為大圓上的劣弧
BP
AC
的中點(diǎn),給出下列結(jié)論:
①向量
OE
在向量
OB
方向上的投影恰為
1
2
;
②E、F兩點(diǎn)的球面距離為
3
;
③球面上到E、F兩點(diǎn)等距離的點(diǎn)的軌跡是兩個點(diǎn);
④若點(diǎn)M為大圓上的劣弧
AD
的中點(diǎn),則過點(diǎn)M且與直線EF、PC成等角的直線只有三條,其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案