分析 分別求出P,Q,M的坐標(biāo),利用△RMF1與△PQF2的面積之比為e,|MF2|=|F1F2|=2c,可得3c=xM=$\frac{{c}^{3}}{{c}^{2}-{a}^{2}}$,即可得出結(jié)論.
解答 解:由題意,|OB|=b,|OF1|=c.∴kPQ=$\frac{c}$,kMN=-$\frac{c}$.
直線PQ為:y=$\frac{c}$(x+c),與y=$\frac{a}$x.聯(lián)立得:Q($\frac{ac}{c-a}$,$\frac{bc}{c-a}$);
與y=-$\frac{a}$x.聯(lián)立得:P($\frac{-ac}{c+a}$,$\frac{bc}{c+a}$).
直線MN為:y-$\frac{bc}{c+a}$=-$\frac{c}$(x-$\frac{-ac}{c+a}$),
令y=0得:xM=$\frac{{c}^{3}}{{c}^{2}-{a}^{2}}$
又△RMF1與△PQF2的面積之比為e,∴|MF2|=|F1F2|=2c,∴3c=xM=$\frac{{c}^{3}}{{c}^{2}-{a}^{2}}$,
解之得:e2=$\frac{3}{2}$,
∴e=$\frac{\sqrt{6}}{2}$.
點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2sin($\frac{1}{2}$x-$\frac{π}{4}$) | B. | f(x)=2sin($\frac{1}{2}$x+$\frac{3π}{4}$) | C. | f(x)=2sin(2x-$\frac{π}{4}$) | D. | f(x)=2sin(2x+$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | $\frac{3π}{2}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com