【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2 cos( +θ).
(I)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于M,N兩點,求|MN|的值.
【答案】解:(Ⅰ)∵直線l的參數(shù)方程為 (t為參數(shù)),
∴消去參數(shù)t,得直線l的直角坐標(biāo)方程為 =0.
∵曲線C的極坐標(biāo)方程為ρ=2 cos( +θ).
即 =2cosθ﹣2sinθ,
即ρ2=2ρcosθ﹣2ρsinθ,
∴曲線C的直角坐標(biāo)方程為x2+y2=2x﹣2y,即(x﹣1)2+(y+1)2=2.
(Ⅱ)曲線C是以C(1,﹣1)為圓心,以r= 為半徑的圓,
圓心C(1,﹣1)到直線l的距離d= = ,
∵直線l與曲線C相交于M,N兩點,
∴|MN|=2 =2 =
【解析】(Ⅰ)直線l的參數(shù)方程消去參數(shù)t,得直線l的直角坐標(biāo)方程為 =0;曲線C的極坐標(biāo)方程l轉(zhuǎn)化為ρ2=2ρcosθ﹣2ρsinθ,由此能求出曲線C的直角坐標(biāo)方程.(Ⅱ)曲線C是以C(1,﹣1)為圓心,以r= 為半徑的圓,求出圓心C(1,﹣1)到直線l的距離d,由|MN|=2 ,能求出結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別與BC,AD交于點P,Q,若 =t .
(1)當(dāng)t= 時,求證:平面SAE⊥平面MNPQ;
(2)是否存在實數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實數(shù)t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC=CA=2,AA1=4,D為A1B1的中點,E為棱BB1上的點,AB1⊥平面C1DE,且B1,C1,D,E四點在同一球面上,則該球的表面積為( 。
A. 9π B. 11π C. 12π D. 14π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E為AB的中點.
(Ⅰ)求證:AN∥平面MEC;
(Ⅱ)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長h;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值4.
(I)求實數(shù)a,b的值;
(Ⅱ)當(dāng)a>0時,求曲線y=f(x)在點(﹣2,f(﹣2))處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加冬季越野跑的600名選手編號為:001,002,…,600.采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,把編號分50組后,在第一組的001到012這12個編號中隨機抽得的號碼為004.這600名選手分穿著三種顏色的衣服,從001到301穿紅色衣服,從302到496穿白色衣服,從497到600穿黃色衣服.則抽到穿白色衣服的選手人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是 ,射線 與圓C的交點為O,P,與直線l的交點為Q,求|OP||OQ|的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)對x∈R恒成立,當(dāng)x∈[0,1]時,f(x)=2x , 則 =( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點為圓心且與直線mx﹣y﹣2m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為( )
A.x2+y2=5
B.x2+y2=3
C.x2+y2=9
D.x2+y2=7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com