解答:解:(1)因?yàn)閒′(x)=(x
2-3x+3)•e
x+(2x-3)•e
x=x(x-1)•e
x,
由f′(x)>0?x>1或x<0;由f′(x)<0?0<x<1,
所以f(x)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減,
欲使f(x)在[-2,t]上為單調(diào)函數(shù),則-2<t≤0.
(2)因?yàn)閒(x)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減,
所以f(x)在x=1處取得極小值f(1)=e.
又f(-2)=
<e,所以f(x)僅在x=-2處取得[-2,t]上的最小值f(-2),
從而當(dāng)t>-2時(shí),f(-2)<f(t),即m<n.
(3)由(1)知f(x)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減,
故當(dāng)t=0或t=1時(shí),方程f(x)-m=0在[-2,t]上不可能有三個(gè)不等實(shí)根,
所以t≥2,且t∈N.
當(dāng)t≥2,且t∈N時(shí),方程f(x)-m=0在[-2,t]上有三個(gè)不等實(shí)根,
只需滿(mǎn)足m∈(max(f(-2),f(1)),min(f(0),f(t)))即可.
因?yàn)閒(-2)=
,f(0)=3,f(1)=e,f(2)=e
2,且f(t)≥f(2)=e
2>3=f(0),
因而f(-2)<f(1)<f(0)<f(2)≤f(t),
所以f(1)<m<f(0),即e<m<3,
即實(shí)數(shù)m的取值范圍是(e,3).