【題目】已知函數(shù)的圖象與直線有3個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是________.
【答案】
【解析】
分情況當(dāng)與和三種情況,再根據(jù)的取值范圍以及二次函數(shù)的零點(diǎn)存在定理數(shù)形結(jié)合分析即可.
解法一:設(shè),.
當(dāng)時(shí),顯然不成立.
當(dāng)時(shí),若,
則由圖象可知與的圖象顯然只有1個(gè)交點(diǎn),
所以當(dāng)時(shí),與的圖象有2個(gè)交點(diǎn),
即關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,
所以,解得.
當(dāng)時(shí),若,則由圖象可知與的圖象顯然只有1個(gè)交點(diǎn),
所以當(dāng)時(shí),與的圖象有2個(gè)交點(diǎn),
即關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,
所以,解得.
綜上,實(shí)數(shù)的取值范圍是.
解法二:設(shè).
當(dāng)時(shí),,
故在上有1個(gè)零點(diǎn),在上有2個(gè)零點(diǎn),
所以,解得.
當(dāng)時(shí),,
故在上有1個(gè)零點(diǎn),在上有2個(gè)零點(diǎn),
所以,解得.
當(dāng)時(shí),在上單調(diào)遞增,不合題意,舍去.
綜上,實(shí)數(shù)的取值范圍是.
解法三:原題等價(jià)于與的圖象有3個(gè)交點(diǎn).
當(dāng)時(shí),由圖象可知與的圖象在上顯然只有1個(gè)交點(diǎn),
只需與的圖象在上有2個(gè)交點(diǎn),
即關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,
所以,解得.
當(dāng)時(shí),由圖象可知與的圖象在上顯然只有1個(gè)交點(diǎn),
只需與的圖象在上有2個(gè)交點(diǎn),
即關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,
所以,解得.
綜上,實(shí)數(shù)的取值范圍是.
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m且,若路面AB.側(cè)邊CF和DE,底部EF的造價(jià)分別為4a千元/m,5a千元/m,6a千元/m(a為正常數(shù)),.
(1)試用θ表示箱梁的總造價(jià)y(千元);
(2)試確定cosθ的值,使總造價(jià)最低?并求最低總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原,如圖所示,平行四邊形形狀的紙片是由六個(gè)邊長為的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______;若該六面體內(nèi)有一球,則該球體積的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物公司將A型病毒疫苗用100只小白鼠進(jìn)行科研和臨床試驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如表:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射 | 10 | x | A |
注射 | 40 | y | B |
總計(jì) | 50 | 50 | 100 |
現(xiàn)從所有試驗(yàn)的小白鼠中任取一只,取得注射疫苗小白鼠的概率為.
(1)能否有99.9%的把握認(rèn)為注射此型號疫苗有效?
(2)現(xiàn)從感染病毒的小白鼠中任取3只進(jìn)行病理分析,記已注射疫苗的小白鼠只數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系中,已知正四棱錐P-ABCD的所有棱長均為6,正方形ABCD的中心為坐標(biāo)原點(diǎn)O,AD,BC平行于x軸,AB、CD平行于y軸,頂點(diǎn)P在z軸的正半軸上,點(diǎn)M、N分別在PA,BD上,且.
(1)若,求直線MN與PC所成角的大;
(2)若二面角A-PN-D的平面角的余弦值為,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形,且,,,點(diǎn)在面上的投影恰在上,點(diǎn)為中點(diǎn).
(1)求證:為線段的中點(diǎn);
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是邊長為1的正方形ABCD的邊CD上的動點(diǎn)(與點(diǎn)C,D不重合),,過點(diǎn)E作交的外角平分線于點(diǎn)F,若,則實(shí)數(shù)的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設(shè)表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com