將參數(shù)方程(q 參數(shù))化為普通方程,所得方程是____.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應的一個特征向量
e1
=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標系與參數(shù)方程
過點M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點,試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)).
現(xiàn)以原點O為極點,x軸的正半軸為極軸,建立極坐標系,寫出曲線C的極坐標方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知某圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程.
(2)已知二階矩陣M有特征值λ=8及對應的一個特征向量e1=
.
1
1
.
,且矩陣M對應的變換將點(-1,2)變換成
(-2,4).求矩陣M的另一個特征值及對應的一個特征向量e2的坐標之間的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
α
=
1
1
,屬于特征值1的一個特征向量為
β
=
&-2
;
(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標系與參數(shù)方程
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4-5:不等式選講,設函數(shù)f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廈門模擬)本小題設有(1)(2)(3)三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知e1=
1
1
是矩陣M=
a
 1
0
 b
屬于特征值λ1=2的一個特征向量.
(I)求矩陣M;
(Ⅱ)若a=
2
1
,求M10a.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,A(l,0),B(2,0)是兩個定點,曲線C的參數(shù)方程為
AB
為參數(shù)).
(I)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)以A(l,0為極點,|
AB
|為長度單位,射線AB為極軸建立極坐標系,求曲線C的極坐標方程.
(3)選修4-5:不等式選講
(I)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>

同步練習冊答案