關于函數(shù)f(x)=4sin(x∈R),有下列命題:
①由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍;
②y=f(x)的表達式可改寫為y=4cos;
③y=f(x)的圖象關于點對稱;
④y=f(x)的圖象關于直線x=-對稱.
其中正確的命題的序號是    .(把你認為正確的命題序號都填上)
【答案】分析:首先根據(jù)函數(shù)求出最小正周期,然后根據(jù)誘導公式求出對稱中心,然后根據(jù)圖象分別求出最大值和最小值,最后綜合判斷選項.
解答:解:函數(shù)f(x)=4sin的最小正周期T=π,
由相鄰兩個零點的橫坐標間的距離是=知①錯.
利用誘導公式得f(x)=4cos
=4cos=4cos,知②正確.
由于曲線f(x)與x軸的每個交點都是它的對稱中心,
將x=-代入得f(x)=4sin0=0,
因此點(-,0)是f(x)圖象的一個對稱中心,
故命題③正確.
曲線f(x)的對稱軸必經(jīng)過圖象的最高點或最低點,且與y軸平行,而x=-時y=0,點
(-,0)不是最高點也不是最低點,
故直線x=-不是圖象的對稱軸,因此命題④不正確.
故答案為:②③
點評:本題考查三角函數(shù)的周期性及其求法,誘導公式的利用,以及正弦函數(shù)的對稱性問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=2(sinx-cosx)cosx的四個結論:
P1:最大值為
2
;
P2:最小正周期為π;
P3:單調遞增區(qū)間為[kπ-
π
8
,kπ+
3
8
π],k∈
Z;
P4:圖象的對稱中心為(
k
2
π+
π
8
,-1),k∈
Z.
其中正確的有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=sin2x-cos2x有下列命題:
①函數(shù)y=f(x)的周期為π;                
②直線x=
π
4
是y=f(x)圖象的一條對稱軸;
點(
π
8
,0)
是y=f(x)圖象的一個對稱中心;
(-
π
8
8
)
是函數(shù)y=f(x)的一個單調遞減區(qū)間.
其中真命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•鹽城一模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即 {x}=m.在此基礎上給出下列關于函數(shù)f(x)=|x-{x}|的四個命題:
(1)y=f(x)的定義域是R,值域是[0,
1
2
]
(2)y=f(x)是周期函數(shù),最小正周期是1
(3)y=f(x)的圖象關于直線x=
k
2
(k∈Z)對稱
(4)y=f(x)在[-
1
2
,
1
2
]
上是增函數(shù)   
則其中真命題是
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對應函數(shù)值,為便于研究,相關函數(shù)值非整數(shù)值時,取值精確到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.026 0.21 0.20 -0.22 -0.03 0 -226.05
下列關于函數(shù)f(x)的敘述:
(1)f(x)為奇函數(shù);                          (2)f(x)在[0.55,0.6]上必有零點
(3)f(x)在(-∞,-0.35]上單調遞減;         (4)a<0
其中所有正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省四地六校高三上學期第一次月考文科數(shù)學試卷(解析版) 題型:填空題

關于函數(shù)f(x)= 4 sin(2x+)(),有下列命題:

①由可得必是的整數(shù)倍;

的表達式可改寫為

的圖象關于點對稱;

的圖象關于直線對稱.

其中正確命題的序號是________________.

 

查看答案和解析>>

同步練習冊答案