已知:2cosα-sinα=0,則數(shù)學(xué)公式=________.


分析:由條件利用同角三角函數(shù)的基本關(guān)系求出tanα=2,再利用兩角差的正切公式求得的值.
解答:∵2cosα-sinα=0,∴tanα=2,∴===
故答案為:
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正切公式的應(yīng)用,求出tanα=2,是解題的突破口,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a+b=5,c=
7
,且cos 2C+2cos(A+B)=-
3
2

(1)求角C的大小;
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)寫出與
π
4
終邊相同角的集合S,并且把S中適合不等式-2π≤β<4π的元素β寫出來(lái).
(2)已知tanα=-
1
3
,計(jì)算
sinα+2cosα
5cosα-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=a=(
2
cosα,
2
sinα)
,
OB
=b=(2cosβ,2sinβ),其中O為坐標(biāo)原點(diǎn),且
π
6
≤α<
π
2
<β≤
6

(1)若
a
⊥(
b
-
a
),求β-α的值;
(2)當(dāng)
a
•(
b
-
a
)取最小值時(shí),求△OAB的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義非零向量
OM
=(a,b)
的“相伴函數(shù)”為f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
稱為函數(shù)f(x)=asinx+bcosx的“相伴向量”(其中O為坐標(biāo)原點(diǎn)).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè)h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求證:h(x)∈S;
(2)求(1)中函數(shù)h(x)的“相伴向量”模的取值范圍;
(3)已知點(diǎn)M(a,b)(b≠0)滿足:(a-
3
)2+(b-1)2=1
上一點(diǎn),向量
OM
的“相伴函數(shù)”f(x)在x=x0處取得最大值.當(dāng)點(diǎn)M運(yùn)動(dòng)時(shí),求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊一模)已知函數(shù)f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2
(ω>0,0<φ<
π
2
)
.其圖象的兩個(gè)相鄰對(duì)稱中心的距離為
π
2
,且過點(diǎn)(
π
3
,1)

(I)函數(shù)f(x)的達(dá)式;
(Ⅱ)在△ABC中.a(chǎn)、b、c分別是角A、B、C的對(duì)邊,a=
5
,S△ABC=2
5
,角C為銳角.且滿f(
C
2
-
π
12
)=
7
6
,求c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案