【題目】如圖,設(shè)拋物線的準(zhǔn)線與軸交于橢圓的右焦點(diǎn),為左焦點(diǎn),橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長交于點(diǎn)為上一動(dòng)點(diǎn),且在之間移動(dòng).
(1)當(dāng)取最小值時(shí),求和的方程;
(2)若的邊長恰好是三個(gè)連接的自然數(shù),求面積的最大值.
【答案】(1),.(2).
【解析】分析:(1)用表示出,根據(jù)基本不等式得出的值,從而得出的方程;
(2)用表示出橢圓的方程,聯(lián)立方程組得出P點(diǎn)坐標(biāo),計(jì)算出的三邊關(guān)于的式子,從而確定的值,求出的距離和M到直線PQ的距離,利用二次函數(shù)性質(zhì)得出三角形面積的最大值.
詳解:(1)因?yàn)?/span>,,
則,,
所以取最小值時(shí),
此時(shí)拋物線,此時(shí),
所以橢圓的方程為.
(2)因?yàn)?/span>,,則,,
設(shè)橢圓的標(biāo)準(zhǔn)方程為,,,
由,得,
所以或(舍去),
代入拋物線方程得,
即,
于是,,
又的邊長恰好是三個(gè)連續(xù)的自然數(shù),
所以,此時(shí)拋物線方程為,
則直線的方程為,
聯(lián)立,得或(舍去)
于是.
所以,
設(shè)到直線的距離為,
則
當(dāng)時(shí),,
所以的面積最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度.已知曲線,過點(diǎn)的直線的參數(shù)方程為.直線與曲線分別交于、.
(1)求的取值范圍;
(2)若、、成等比數(shù)列,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機(jī)械廠欲從米,米的矩形鐵皮中裁剪出一個(gè)四邊形加工成某儀器的零件,裁剪要求如下:點(diǎn)分別在邊上,且,.設(shè),四邊形的面積為(單位:平方米).
(1)求關(guān)于的函數(shù)關(guān)系式,求出定義域;
(2)當(dāng)的長為何值時(shí),裁剪出的四邊形的面積最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極小值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解重慶市高中學(xué)生在面對新高考模式“3+1+2”的科目選擇中,物理與歷史的二選一是否與性別有關(guān),某高中隨機(jī)對該校50名高一學(xué)生進(jìn)行了問卷調(diào)查得到相關(guān)數(shù)據(jù)如下列聯(lián)表:
選物理 | 選歷史 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) |
己知在這50人中隨機(jī)抽取1人,抽到選物理的人的概率為。
(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為物理與歷史的二選一與性別有關(guān)?
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式,其中為樣本容量)
(2)己知在選物理的10位女生中有3人選擇了化學(xué)、地理,有5人選擇了化學(xué)、生物,有2人選擇了生物、地理,現(xiàn)從這10人中抽取3人進(jìn)行更詳細(xì)的學(xué)科意愿調(diào)查,記抽到的3人中選擇化學(xué)的有X人,求隨機(jī)變量X的分布列及數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
Ⅰ當(dāng)時(shí),恒成立,求a的取值范圍;
Ⅱ設(shè)是定義在上的函數(shù),在內(nèi)任取個(gè)數(shù),,,,,設(shè),令,,如果存在一個(gè)常數(shù),使得恒成立,則稱函數(shù)在區(qū)間上的具有性質(zhì)P.試判斷函數(shù)在區(qū)間上是否具有性質(zhì)P?若具有性質(zhì)P,請求出M的最小值;若不具有性質(zhì)P,請說明理由.注:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域?yàn)?/span>R的奇函數(shù),其中m是常數(shù).
(Ⅰ)判斷f(x)的單調(diào)性,并用定義證明;
(Ⅱ)若對任意x∈[﹣3,1],有f(tx)+f(2t﹣1)≤0恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某池塘中原有一塊浮草,浮草蔓延后的面積(平方米)與時(shí)間(月)之間的函數(shù)關(guān)系式是且,它的圖象如圖所示,給出以下命題:①池塘中原有浮草的面積是平方米;②第個(gè)月浮草的面積超過平方米;③浮草每月增加的面積都相等;④若浮草面積達(dá)到平方米,平方米,平方米所經(jīng)過的時(shí)間分別為,則.其中正確命題的序號有_____.(注:請寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動(dòng)。在1859年的時(shí)候,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個(gè)問題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計(jì)1000以內(nèi)的素?cái)?shù)的個(gè)數(shù)為_________(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com