17.已知定義在R上的函數(shù)f(x)滿足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函數(shù)y=f(x)-$\frac{t}{3}$x(t>0)至少有9個零點,則t的取值范圍為( 。
A.(0,$\frac{1}{3}$)B.(0,54-24$\sqrt{5}$]C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{3}$]

分析 函數(shù)f(x)滿足f(x+3)-f(x)=0,得周期T=3,函數(shù)y=f(x)-$\frac{t}{3}$x(t>0)的零點,就是y=f(x )與y=$\frac{t}{3}x$的交點,作出兩個函數(shù)的圖象,利用圖象確定函數(shù)零點的個數(shù),求出t的取值范圍.

解答 解:∵定義在R上的函數(shù)f(x)滿足f(x+3)-f(x)=0,∴周期T=3
畫出函數(shù)f(x)在[-1,10]的圖象,如圖所示,當直線y=$\frac{t}{3}x$相切于點A(x0,y0)時剛好9個零點,
當x∈(8,10)時,f(x)=-(x-9)2+1,所以過點A的切線方程為y-y0=-2(x0-9)(x-x0
∵切線過原點,-y0=-2(x0-9)(-x0),又∵y0=-(x0-9)2+1,解得x0=4$\sqrt{5}$,
,$\frac{t}{3}$=f′(x)=-2(x-9)=18-8$\sqrt{5}$
,t的取值范圍為(0,54-24$\sqrt{5}$]
故選:B.

點評 本題考查了函數(shù)零點的個數(shù)判定,利用零點定義將函數(shù)轉(zhuǎn)化為兩個基本初等函數(shù),數(shù)形結(jié)合是關(guān)鍵,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知直線方程為(2+2m)x+(1-m)y+4=0.
(1)該直線是否過定點?如果存在,請求出該點坐標,如果不存在,說明你的理由;
(2)當m為何值時,點Q(3,4)到直線的距離最大,最大值為多少?
(3)當m在什么范圍時,該直線與兩坐標軸負半軸均相交?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.72B.76C.80D.88

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果一個三角形最大角是最小角的2倍,且三邊是連續(xù)的自然數(shù),則這個三角形的邊長分別為( 。
A.2,3,4B.3,4,5C.4,5,6D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設復數(shù)z滿足(-1+3i)z=2(1+i),則復數(shù)z在復平面內(nèi)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={x|x+2>0},B={x|x2+2x-3≤0},則A∩B=( 。
A.[-3,-2)B.[-3,-1]C.(-2,1]D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2.記g(x)為f(x)的導函數(shù).
(1)若曲線y=f(x)在點(1,f(1))處的切線垂直于直線x+y+3=0,求a的值;
(2)討論g(x)=0的解的個數(shù);
(3)證明:對任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點與短軸的兩個端點構(gòu)成一個面積為1的直角三角形.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設過點M(0,t)(t>0)的直線l與橢圓E相交于A、B兩點,點M關(guān)于原點的對稱點為N,若點N總在以線段AB為直徑的圓內(nèi),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列事件:①拋一枚硬幣,出現(xiàn)正面朝上;②某人買彩票中獎;③大年初一太原下雪;④標準大氣壓下,水加熱到90°C時會沸騰.其中隨機事件的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案