確定函數(shù)f(x)=x2-4x+3的增減區(qū)間.

答案:
解析:

  解析:(x)=2x-4.

  令(x)≥0即2x-4≥0,解得x≥2,故當(dāng)x∈[2,+∞)時(shí),是增函數(shù);

  令(x)≤0即2x-4≤0,解得x≤2,故當(dāng)x∈[-∞,2)時(shí),是減函數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)各省市高考模擬試題匯編 題型:044

設(shè)函數(shù)f(x)=(x-3a)(a>0,且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點(diǎn).

(Ⅰ)寫(xiě)出函數(shù)y=g(x)的解析式;

(Ⅱ)若當(dāng)x∈[a+2,a+3]時(shí),恒有|f(x)-g(x)|≤1,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)練必修一數(shù)學(xué)蘇教版 蘇教版 題型:044

(探究題)探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時(shí)x的值,列表如下:

?請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下問(wèn)題:

(1)函數(shù)f(x)=x+,x∈(0,+∞)在區(qū)間(0,2)上遞減;函數(shù)f(x)=x+,x∈(0,+∞)在區(qū)間________上遞增.當(dāng)x=________時(shí),ymin=________.

(2)證明函數(shù)f(x)=x+,x∈(0,+∞)在區(qū)間(0,2)上遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)必修一3.1函數(shù)與方程練習(xí)卷(二)(解析版) 題型:解答題

確定函數(shù)f(x)=+x-4的零點(diǎn)個(gè)數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分12分)

已知函數(shù)f(x)=-x3+x2+ax+b(a,b∈R).

(1)若a=3,試確定函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)在其圖象上任意一點(diǎn)(x0,f(x0))處切線的斜率都小于2a2,求a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省期中題 題型:解答題

設(shè)函數(shù)f(x)=x3x2+bx+c,其中a>0,曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為y=1.
(1)確定b,c的值;
(2)設(shè)曲線y=f(x)在點(diǎn)(x1,f(x1))及(x2,f(x2))處的切線都過(guò)點(diǎn)(0,2).
證明:當(dāng)x1≠x2時(shí),f ′(x1)≠f ′(x2);
(3)若過(guò)點(diǎn)(0,2)可作曲線y=f(x)的三條不同切線,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案