已知函數(shù)f(x)=
1
3
x3-(a-1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},則函數(shù)f(x)在R上是增函數(shù)的概率是
 
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:函數(shù)f(x)在R上是增函數(shù)轉(zhuǎn)化為f'(x)≥0恒成立,即△≤0解得a,b的一個關(guān)系式,一一列舉出滿足條件的基本事件,根據(jù)概率公式計(jì)算即可.
解答: 解:f'(x)=x2-2(a-1)x+b2
若函數(shù)f(x)在R上是增函數(shù),則對于任意x∈R,f'(x)≥0恒成立.
所以,△=4(a-1)2-4b2≤0,即(a+b-1)(a-b-1)≤0
因?yàn)閍+b-1≥1,
所以a-b-1≤0,
即a-b≤1,
則滿足的條件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3),(3,2),(4,3)9個基本事件,
總的基本事件有12種.
故函數(shù)f(x)在R上是增函數(shù)的概率P=
9
12
=
3
4

故答案為:
3
4
點(diǎn)評:考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,轉(zhuǎn)化為恒成立問題求解,是導(dǎo)數(shù)與古典概型相結(jié)合的題目,新穎,體現(xiàn)了數(shù)形結(jié)合的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式,(a∈R):
(1)ax2-2(a+1)x+4>0;
(2)x2-2ax+2≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在邊長為6cm的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合于B,構(gòu)成一個三棱錐(如圖2).
(Ⅰ)在三棱錐上標(biāo)注出M、N點(diǎn),并判別MN與平面AEF的位置關(guān)系,并給出證明;
(Ⅱ)G是線段AB上一點(diǎn),且
AG
=λ•
AB
,問是否存在點(diǎn)G使得AB⊥面EGF,若存在,求出λ的值;若不存在,請說明理由;
(Ⅲ)求多面體E-AFNM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算定積分:
6
1
(2x-
1
x2
)dx;    
(2)求函數(shù)的導(dǎo)數(shù):f(x)=
sin(2x+
π
6
)
ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a6+a9+a13+a16=20,則S21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的一個焦點(diǎn)將長軸分為3:2兩段,則橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
2+i
1+i
的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x2-1)(x2+x-6)在區(qū)間(0,2)上的零點(diǎn)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“三角形中最多只有一個內(nèi)角是直角”時的假設(shè)是
 

查看答案和解析>>

同步練習(xí)冊答案