已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.
求證:a、b、c、d中至少有一個(gè)是負(fù)數(shù).
【答案】分析:利用反證法進(jìn)行證明,假設(shè)a、b、c、d都是非負(fù)數(shù),找出矛盾即可.
解答:證明:假設(shè)a、b、c、d都是非負(fù)數(shù),
∵a+b=c+d=1,
∴(a+b)(c+d)=1.
∴ac+bd+bc+ad=1≥ac+bd.
這與ac+bd>1矛盾.
所以假設(shè)不成立,即a、b、c、d中至少有一個(gè)負(fù)數(shù).
點(diǎn)評(píng):此題考查反證法的定義:從否定命題的結(jié)論入手,并把對(duì)命題結(jié)論的否定作為推理的已知條件,進(jìn)行正確的邏輯推理,使之得到與已知條件、已知公理、定理、法則或者已經(jīng)證明為正確的命題等相矛,矛盾的原因是假設(shè)不成立,所以肯定了命題的結(jié)論,從而使命題獲得了證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、給出如下四個(gè)命題:
①對(duì)于任意一條直線(xiàn)a,平面α內(nèi)必有無(wú)數(shù)條直線(xiàn)與a垂直;
②若α、β是兩個(gè)不重合的平面,l、m是兩條不重合的直線(xiàn),則α∥β的一個(gè)充分而不必要條件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四條不重合的直線(xiàn),如果a⊥c,a⊥d,b⊥c,b⊥d,則“a∥b”與“c∥d”不可能都不成立;
④已知命題P:若四點(diǎn)不共面,那么這四點(diǎn)中任何三點(diǎn)都不共線(xiàn).
則命題P的逆否命題是假命題上命題中,正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c,d都是正數(shù),S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,則S的取值范圍是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b,c>d,且a,b,c,d均不為0,那么下列不等式成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C、D四點(diǎn)不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H,則四邊形EFGH是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c,d是實(shí)數(shù),用分析法證明:
a2+b2
+
c2+d2
(a+c)2+(b+d)2

查看答案和解析>>

同步練習(xí)冊(cè)答案