【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了若干名學(xué)生的體檢表,并得到 如下直方圖:
(Ⅰ)若直方圖中前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以下的人數(shù);
(Ⅱ)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對(duì)年紀(jì)名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如下數(shù)據(jù):
根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(Ⅲ)在(Ⅱ)中調(diào)查的100名學(xué)生中,在不近視的學(xué)生中按照成績是否在前50名分層抽樣抽取了9人,
進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為,求
的分布列和數(shù)學(xué)期望.
附:
【答案】(Ⅰ);(Ⅱ)在犯錯(cuò)的概率不超過的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系;(Ⅲ)分布列見解析,.
【解析】
試題分析:(Ⅰ)由頻率分布直方圖可知,當(dāng)前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列時(shí),以下的頻率為,故全年級(jí)視力在以下的人數(shù)約為;
(Ⅱ)由,因此在犯錯(cuò)誤的概率不超過的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系;
(Ⅲ)依題可取,,,,則,,
,,
所以的數(shù)學(xué)期望.
試題解析:(Ⅰ)設(shè)各組的頻率為,
依題意,前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,故
,,
所以由得,
所以視力在5.0以下的頻率為1-0.17=0.83,
故全年級(jí)視力在5.0以下的人數(shù)約為
(Ⅱ)
因此在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系.
(Ⅲ)依題意9人中年級(jí)名次在1~50名和951~1000名分別有3人和6人,
可取0,1,2,3,
,,
,
的分布列為
X | 0 | 1 | 2 | 3 |
P |
的數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列試驗(yàn)中,是古典概型的為( )
A.種下一粒種子,觀察它是否發(fā)芽
B.從規(guī)格直徑為250 mm±0.6 mm的一批合格產(chǎn)品中任意抽一件,測量其直徑d
C.拋一枚硬幣,觀察其向上的面
D.某人射擊中靶或不中靶
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若事件A和B是互斥事件,且P(A)=0.1,則P(B)的取值范圍是( )
A. [0,0.9] B. [0.1,0.9] C. (0,0.9] D. [0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C上任意一點(diǎn)M滿足|MF1|+|MF2|=4,其中F1(,F2(,
(Ⅰ)求曲線C的方程;
(Ⅱ)已知直線與曲線C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列表述正確的是( )
①歸納推理是由部分到整體的推理;②歸納推理是由一般到一般的推理;
③演繹推理是由一般到特殊的推理;④類比推理是由特殊到一般的推理;
⑤類比推理是由特殊到特殊的推理。
A. ①②③; B. ②③④; C. ②④⑤; D. ①③⑤。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面,已知,為線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計(jì)一個(gè)程序?qū)⑷?/span>60名學(xué)生考試及格者的平均分計(jì)算并打印出來.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若ρ1=ρ2≠0,θ1+θ2=π,則點(diǎn)M1(ρ1,θ1)與點(diǎn)M2(ρ2,θ2)的位置關(guān)系是( )
A. 關(guān)于極軸所在的直線對(duì)稱
B. 關(guān)于極點(diǎn)對(duì)稱
C. 關(guān)于過極點(diǎn)垂直于極軸的直線對(duì)稱
D. 重合
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com