甲有大小相同的兩張卡片,標(biāo)有數(shù)字2、3;乙有大小相同的卡片四張,分別標(biāo)有1、2、3、4.
(1)求乙隨機(jī)抽取的兩張卡片的數(shù)字之和為奇數(shù)的概率;
(2)甲、乙分別取出一張卡,比較數(shù)字,數(shù)字大者獲勝,求乙獲勝的概率.

(1);(2).

解析試題分析:(1)兩張卡片的數(shù)字之和為奇數(shù),即一奇一偶;兩張卡片的數(shù)字之和為偶數(shù),即兩奇或兩偶;(2)乙獲勝,即要求乙取出的卡片上標(biāo)有的數(shù)字比甲取出的卡片上標(biāo)有的數(shù)字大,這樣的情形有多少種,往往需要用枚舉法.在(1)中我們是不考慮兩張卡片的順序的,若考慮順序,即原題(1)這樣表述:求乙隨機(jī)先后抽取的兩張卡片的數(shù)字之和為奇數(shù)的概率,則應(yīng)這樣求解:基本事件總數(shù)為,同時(shí)兩張卡片的數(shù)字之和為奇數(shù),即分為先奇后偶和先偶后奇,共種,概率為,所以概率計(jì)算一定要分清與順序是否有關(guān).
試題解析:(1)乙隨機(jī)在分別標(biāo)有1、2、3、4的四張卡片中抽取的兩張卡片,其基本事件共有種,若要求兩張卡片的數(shù)字之和為奇數(shù),即一張為奇數(shù),即在1、3中抽一張,另一張為偶數(shù),即在2、4中抽一張,則兩張卡片的數(shù)字之和為奇數(shù)這樣的事件含有基本事件,根據(jù)古典概型概率計(jì)算公式的概率為.                                                            5分
(2)甲、乙分別取出一張卡,則基本事件總數(shù)為,乙獲勝,即要求乙取出的卡片上標(biāo)有的數(shù)字比甲取出的卡片上標(biāo)有的數(shù)字大,故符合條件的數(shù)對(duì)有,有3對(duì),根據(jù)古典概型概率計(jì)算公式得乙獲勝的概率為.                                               10分
考點(diǎn):計(jì)數(shù)原理與古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在乒乓球比賽中,甲與乙以“五局三勝”制進(jìn)行比賽,根據(jù)以往比賽情況,甲在每一局勝乙的概率均為 .已知比賽中,乙先贏了第一局,求:
(Ⅰ)甲在這種情況下取勝的概率;
(Ⅱ)設(shè)比賽局?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望(均用分?jǐn)?shù)作答)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校夏令營(yíng)有3名男同學(xué)和3名女同學(xué),其年級(jí)情況如下表:

 
一年級(jí)
二年級(jí)
三年級(jí)
男同學(xué)



女同學(xué)



 
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)
(1)用表中字母列舉出所有可能的結(jié)果
(2)設(shè)為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下圖是淮北市6月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇6月1日至6月15日中的某一天到達(dá)該市,并停留2天.

(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(2)若設(shè)是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),請(qǐng)分別求當(dāng)x=0時(shí),x=1時(shí)和x=3時(shí)的概率值。
(3)由圖判斷從哪天開始淮北市連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生關(guān)注NBA是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:

 
關(guān)注NBA
不關(guān)注NBA
合  計(jì)
男   生
 
6
 
女   生
10
 
 
合   計(jì)
 
 
48
 
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為2/3
⑴請(qǐng)將上面列連表補(bǔ)充完整,并判斷是否有的把握認(rèn)為關(guān)注NBA與性別有關(guān)?
⑵現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中關(guān)注NBA的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

去年2月29日,我國(guó)發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》指出空氣質(zhì)量指數(shù)在為優(yōu)秀,各類人群可正常活動(dòng).惠州市環(huán)保局對(duì)我市2014年進(jìn)行為期一年的空氣質(zhì)量監(jiān)測(cè),得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個(gè)作為樣本進(jìn)行分析報(bào)告,樣本數(shù)據(jù)分組區(qū)間為,,由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.
(1) 求的值;
(2) 根據(jù)樣本數(shù)據(jù),試估計(jì)這一年度的空氣質(zhì)量指數(shù)的平均值;(注:設(shè)樣本數(shù)據(jù)第組的頻率為,第組區(qū)間的中點(diǎn)值為,則樣本數(shù)據(jù)的平均值為.)
(3) 如果空氣質(zhì)量指數(shù)不超過,就認(rèn)定空氣質(zhì)量為“特優(yōu)等級(jí)”,則從這一年的監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取天的數(shù)值,其中達(dá)到“特優(yōu)等級(jí)”的天數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小王經(jīng)營(yíng)一家面包店,每天從生產(chǎn)商處訂購一種品牌現(xiàn)烤面包出售.已知每賣出一個(gè)現(xiàn)烤面包可獲利10元,若當(dāng)天賣不完,則未賣出的現(xiàn)烤面包因過期每個(gè)虧損5元.經(jīng)統(tǒng)計(jì),得到在某月(30天)中,小王每天售出的現(xiàn)烤面包個(gè)數(shù)及天數(shù)如下表:

售出個(gè)數(shù)
10
11
12
13
14
15
天數(shù)
3
3
3
6
9
6
試依據(jù)以頻率估計(jì)概率的統(tǒng)計(jì)思想,解答下列問題:
(1)計(jì)算小王某天售出該現(xiàn)烤面包超過13個(gè)的概率;
(2)若在今后的連續(xù)5天中,售出該現(xiàn)烤面包超過13個(gè)的天數(shù)大于3天,則小王決定增加訂購量.試求小王增加訂購量的概率.
(3)若小王每天訂購14個(gè)該現(xiàn)烤面包,求其一天出售該現(xiàn)烤面包所獲利潤(rùn)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為考察某種藥物預(yù)防禽流感的效果,進(jìn)行動(dòng)物家禽試驗(yàn),調(diào)查了100個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服用藥的共有60個(gè)樣本,服用藥但患病的仍有20個(gè)樣本,沒有服用藥且未患病的有20個(gè)樣本.
(1)根據(jù)所給樣本數(shù)據(jù)完成下面2×2列聯(lián)表;
(2)請(qǐng)問能有多大把握認(rèn)為藥物有效?

 
 
不得禽流感
 
得禽流感
 
總計(jì)
 
服藥
 
 
 
 
 
 
 
不服藥
 
 
 
 
 
 
 
總計(jì)
 
 
 
 
 
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

甲,乙兩人約定8:00到9:00在圖書館見面,甲愿意等20分鐘,乙愿意等30分鐘,則他們見面的概率為              .

查看答案和解析>>

同步練習(xí)冊(cè)答案